
Lazy Abstraction with Interpolants for Arrays

F. Alberti1, R. Bruttomesso2, S. Ghilardi2,
S. Ranise3, N. Sharygina1

1Formal Verification and Security Lab, University of Lugano, Switzerland
2 University of Milan, Italy

3FBK-Irst, Trento, Italy

LPAR-18
March 12, 2012

Context

Software model checking:

Given a program P and a property φ, does P exhibit an execution
violating φ?

Transition-relation representation of input program

Predicate abstraction [GS97]

Lazy Abstraction [HJMS02]

different degrees of precision for different parts of the program

F. Alberti Lazy Abstraction with Interpolants for Arrays 1 / 22

Context

Software model checking:

Given a program P and a property φ, does P exhibit an execution
violating φ?

Transition-relation representation of input program

Predicate abstraction [GS97]

Lazy Abstraction [HJMS02]

different degrees of precision for different parts of the program

F. Alberti Lazy Abstraction with Interpolants for Arrays 1 / 22

Context: Software model checking
Lazy Abstraction with Interpolants

Several abstraction refinement strategies

Interpolants from (unsatisfiable) formulas representing infeasible
counterexamples [HJMM04, McM06]

1. φ = φ1 ∧ · · · ∧ φn is satisfiable iff π = τ1 · · · τn is feasible

2. Retrieve a set of (quantifier-free) formulas {ψ0, . . . , ψn} s.t.

ψ0 ≡ >
ψn ≡ ⊥
ψi−1 ∧ φi |= ψi

ψi is over the common signature of φi and φi+1

F. Alberti Lazy Abstraction with Interpolants for Arrays 2 / 22

Context: Software model checking
Lazy Abstraction with Interpolants

Several abstraction refinement strategies

Interpolants from (unsatisfiable) formulas representing infeasible
counterexamples [HJMM04, McM06]

1. φ = φ1 ∧ · · · ∧ φn is satisfiable iff π = τ1 · · · τn is feasible

2. Retrieve a set of (quantifier-free) formulas {ψ0, . . . , ψn} s.t.

ψ0 ≡ >
ψn ≡ ⊥
ψi−1 ∧ φi |= ψi

ψi is over the common signature of φi and φi+1

F. Alberti Lazy Abstraction with Interpolants for Arrays 2 / 22

Context: Software model checking
Lazy Abstraction with Interpolants

The presence of arrays complicates the framework because:

1 Useful array predicates require quantifiers, e.g., “the array a is
sorted”

∀i, j.(0 ≤ i < j < a.length)⇒ a[i] ≤ a[j]

2 No quantifier-free interpolation for the “standard” theory of array
[KMZ06]

F. Alberti Lazy Abstraction with Interpolants for Arrays 3 / 22

Context: Software model checking
Lazy Abstraction with Interpolants

The presence of arrays complicates the framework because:

1 Useful array predicates require quantifiers, e.g., “the array a is
sorted”

∀i, j.(0 ≤ i < j < a.length)⇒ a[i] ≤ a[j]

2 No quantifier-free interpolation for the “standard” theory of array
[KMZ06]

F. Alberti Lazy Abstraction with Interpolants for Arrays 3 / 22

Context: Software model checking
Lazy Abstraction with Interpolants

The presence of arrays complicates the framework because:

1 Useful array predicates require quantifiers, e.g., “the array a is
sorted”

∀i, j.(0 ≤ i < j < a.length)⇒ a[i] ≤ a[j]

2 No quantifier-free interpolation for the “standard” theory of array
[KMZ06]

F. Alberti Lazy Abstraction with Interpolants for Arrays 3 / 22

Context: Software model checking
Lazy Abstraction with Interpolants for Arrays

Our goal: Software model checking of programs handling arrays
with (possibly universally quantified) assertions

Model Checking Modulo Theories framework [GR10]

4 Native handling of arrays
4 Quantified formulas representing set of reachable states

⇒ Redefine the interpolation-based Lazy Abstraction approach:

1 Quantifier handling and Array-reasoning adapted from MCMT
2 New quantifier-free interpolation algorithm for arrays

F. Alberti Lazy Abstraction with Interpolants for Arrays 4 / 22

Context: Software model checking
Lazy Abstraction with Interpolants for Arrays

Our goal: Software model checking of programs handling arrays
with (possibly universally quantified) assertions

Model Checking Modulo Theories framework [GR10]

4 Native handling of arrays
4 Quantified formulas representing set of reachable states

⇒ Redefine the interpolation-based Lazy Abstraction approach:

1 Quantifier handling and Array-reasoning adapted from MCMT
2 New quantifier-free interpolation algorithm for arrays

F. Alberti Lazy Abstraction with Interpolants for Arrays 4 / 22

Context: Software model checking
Lazy Abstraction with Interpolants for Arrays

Our goal: Software model checking of programs handling arrays
with (possibly universally quantified) assertions

Model Checking Modulo Theories framework [GR10]

4 Native handling of arrays
4 Quantified formulas representing set of reachable states

⇒ Redefine the interpolation-based Lazy Abstraction approach:

1 Quantifier handling and Array-reasoning adapted from MCMT
2 New quantifier-free interpolation algorithm for arrays

F. Alberti Lazy Abstraction with Interpolants for Arrays 4 / 22

Outline

1 Array-based Transition Systems

2 Unwinding Array-based Transition Systems

3 Refinement with Interpolants

4 Completeness

5 Experiments

Outline

1 Array-based Transition Systems

2 Unwinding Array-based Transition Systems

3 Refinement with Interpolants

4 Completeness

5 Experiments

Array-based Transition Systems

Class of guarded assignment systems with array state variables

A mono-sorted (INDEX) theory TI = (ΣI , CI) for indexes of arrays

A multi-sorted (ELEMl) theory TE = (ΣE , CE) for data inside arrays

A theory AEI = (Σ, C) linking TI and TE
sort symbols of AE

I are INDEX, ELEMl and ARRAYl
Σ = ΣI ∪ ΣE ∪ { []l}l
• []i : ARRAYi × INDEX→ ELEMi

M∈ C iff

• ARRAYMl = [INDEXM → ELEMMl]
• []Ml is function application
• M|ΣI ∈ CI and M|ΣE ∈ CE

F. Alberti Lazy Abstraction with Interpolants for Arrays 5 / 22

Array-based Transition Systems

Class of guarded assignment systems with array state variables

A mono-sorted (INDEX) theory TI = (ΣI , CI) for indexes of arrays

A multi-sorted (ELEMl) theory TE = (ΣE , CE) for data inside arrays

A theory AEI = (Σ, C) linking TI and TE
sort symbols of AE

I are INDEX, ELEMl and ARRAYl
Σ = ΣI ∪ ΣE ∪ { []l}l
• []i : ARRAYi × INDEX→ ELEMi

M∈ C iff

• ARRAYMl = [INDEXM → ELEMMl]
• []Ml is function application
• M|ΣI ∈ CI and M|ΣE ∈ CE

F. Alberti Lazy Abstraction with Interpolants for Arrays 5 / 22

Array-based Transition Systems

Class of guarded assignment systems with array state variables

A mono-sorted (INDEX) theory TI = (ΣI , CI) for indexes of arrays

A multi-sorted (ELEMl) theory TE = (ΣE , CE) for data inside arrays

A theory AEI = (Σ, C) linking TI and TE

sort symbols of AE
I are INDEX, ELEMl and ARRAYl

Σ = ΣI ∪ ΣE ∪ { []l}l
• []i : ARRAYi × INDEX→ ELEMi

M∈ C iff

• ARRAYMl = [INDEXM → ELEMMl]
• []Ml is function application
• M|ΣI ∈ CI and M|ΣE ∈ CE

F. Alberti Lazy Abstraction with Interpolants for Arrays 5 / 22

Array-based Transition Systems

Class of guarded assignment systems with array state variables

A mono-sorted (INDEX) theory TI = (ΣI , CI) for indexes of arrays

A multi-sorted (ELEMl) theory TE = (ΣE , CE) for data inside arrays

A theory AEI = (Σ, C) linking TI and TE
sort symbols of AE

I are INDEX, ELEMl and ARRAYl
Σ = ΣI ∪ ΣE ∪ { []l}l
• []i : ARRAYi × INDEX→ ELEMi

M∈ C iff

• ARRAYMl = [INDEXM → ELEMMl]
• []Ml is function application
• M|ΣI ∈ CI and M|ΣE ∈ CE

F. Alberti Lazy Abstraction with Interpolants for Arrays 5 / 22

Array-based Transition Systems

Class of guarded assignment systems with array state variables

A mono-sorted (INDEX) theory TI = (ΣI , CI) for indexes of arrays

A multi-sorted (ELEMl) theory TE = (ΣE , CE) for data inside arrays

A theory AEI = (Σ, C) linking TI and TE
sort symbols of AE

I are INDEX, ELEMl and ARRAYl
Σ = ΣI ∪ ΣE ∪ { []l}l
• []i : ARRAYi × INDEX→ ELEMi

M∈ C iff

• ARRAYMl = [INDEXM → ELEMMl]
• []Ml is function application
• M|ΣI ∈ CI and M|ΣE ∈ CE

F. Alberti Lazy Abstraction with Interpolants for Arrays 5 / 22

Array-based Transition Systems

An array-based system for TI , TE is a pair S = (v, {τh})

v = {a, c,d}
a is a set of variables of sort ARRAYl

c is a set of variables of sort INDEX

d is a set of variables of sort ELEMl

pc ∈ d ranging over a set L of locations

I(v) , (pc = lI) is the initial state of S
U(v) , (pc = lE) is the error state of S

F. Alberti Lazy Abstraction with Interpolants for Arrays 6 / 22

Array-based Transition Systems

An array-based system for TI , TE is a pair S = (v, {τh})

v = {a, c,d}
a is a set of variables of sort ARRAYl

c is a set of variables of sort INDEX

d is a set of variables of sort ELEMl

pc ∈ d ranging over a set L of locations

I(v) , (pc = lI) is the initial state of S
U(v) , (pc = lE) is the error state of S

F. Alberti Lazy Abstraction with Interpolants for Arrays 6 / 22

Array-based Transition Systems

An array-based system for TI , TE is a pair S = (v, {τh})

v = {a, c,d}
a is a set of variables of sort ARRAYl

c is a set of variables of sort INDEX

d is a set of variables of sort ELEMl

pc ∈ d ranging over a set L of locations

I(v) , (pc = lI) is the initial state of S
U(v) , (pc = lE) is the error state of S

F. Alberti Lazy Abstraction with Interpolants for Arrays 6 / 22

Array-based Transition Systems

An array-based system for TI , TE is a pair S = (v, {τh})

v = {a, c,d}
a is a set of variables of sort ARRAYl

c is a set of variables of sort INDEX

d is a set of variables of sort ELEMl

pc ∈ d ranging over a set L of locations

I(v) , (pc = lI) is the initial state of S

U(v) , (pc = lE) is the error state of S

F. Alberti Lazy Abstraction with Interpolants for Arrays 6 / 22

Array-based Transition Systems

An array-based system for TI , TE is a pair S = (v, {τh})

v = {a, c,d}
a is a set of variables of sort ARRAYl

c is a set of variables of sort INDEX

d is a set of variables of sort ELEMl

pc ∈ d ranging over a set L of locations

I(v) , (pc = lI) is the initial state of S
U(v) , (pc = lE) is the error state of S

F. Alberti Lazy Abstraction with Interpolants for Arrays 6 / 22

Array-based Transition Systems

An array-based system for TI , TE is a pair S = (v, {τh})

The τh’s are guarded assignments in functional form

∃k


φ(k,a[k], c,d) ∧
a′ = λj. G(k,a[k], c,d, j,a[j]) ∧
c′ = H(k,a[k], c,d) ∧
d′ = K(k,a[k], c,d)



For all τh:

φ(k,a[k], c,d) |= pc = l; src(τh) = l

pc′ = l′; trg(τh) = l′

F. Alberti Lazy Abstraction with Interpolants for Arrays 7 / 22

Array-based Transition Systems

An array-based system for TI , TE is a pair S = (v, {τh})

The τh’s are guarded assignments in functional form

∃k


φ(k,a[k], c,d) ∧
a′ = λj. G(k,a[k], c,d, j,a[j]) ∧
c′ = H(k,a[k], c,d) ∧
d′ = K(k,a[k], c,d)



For all τh:

φ(k,a[k], c,d) |= pc = l; src(τh) = l

pc′ = l′; trg(τh) = l′

F. Alberti Lazy Abstraction with Interpolants for Arrays 7 / 22

Array-based Transition Systems

An array-based system for TI , TE is a pair S = (v, {τh})

The τh’s are guarded assignments in functional form

∃k


φ(k,a[k], c,d) ∧
a′ = λj. G(k,a[k], c,d, j,a[j]) ∧
c′ = H(k,a[k], c,d) ∧
d′ = K(k,a[k], c,d)



For all τh:

φ(k,a[k], c,d) |= pc = l; src(τh) = l

pc′ = l′; trg(τh) = l′

F. Alberti Lazy Abstraction with Interpolants for Arrays 7 / 22

Array-based Transition Systems
Translation from source code

function find (int a[] , int n) {
1 c = 0;

2 while (c < a.length ∧ a[c] 6= n) c = c + 1;

3 if (c ≥ a.length ∧ ∃x.(x ≥ 0 ∧ x < a.length ∧ a[x] = n))

4 ERROR;

}

F. Alberti Lazy Abstraction with Interpolants for Arrays 8 / 22

Array-based Transition Systems
Translation from source code

function find (int a[] , int n) {
1 c = 0;

2 while (c < a.length ∧ a[c] 6= n) c = c + 1;

3 if (c ≥ a.length ∧ ∃x.(x ≥ 0 ∧ x < a.length ∧ a[x] = n))

4 ERROR;

}

TI = LIA with a constant a.length

TE = LIA with a constant n ∪ {1, 2, 3, 4}
a = {a} , c = {c} , d = {pc}

F. Alberti Lazy Abstraction with Interpolants for Arrays 8 / 22

Array-based Transition Systems
Translation from source code

function find (int a[] , int n) {
1 c = 0;

2 while (c < a.length ∧ a[c] 6= n) c = c + 1;

3 if (c ≥ a.length ∧ ∃x.(x ≥ 0 ∧ x < a.length ∧ a[x] = n))

4 ERROR;

}

lI = 1 lE = 4

F. Alberti Lazy Abstraction with Interpolants for Arrays 8 / 22

Array-based Transition Systems
Translation from source code

function find (int a[] , int n) {
1 c = 0;

2 while (c < a.length ∧ a[c] 6= n) c = c + 1;

3 if (c ≥ a.length ∧ ∃x.(x ≥ 0 ∧ x < a.length ∧ a[x] = n))

4 ERROR;

}

τ1 ≡ pc = 1 ∧ pc′ = 2 ∧ c′ = 0

F. Alberti Lazy Abstraction with Interpolants for Arrays 8 / 22

Array-based Transition Systems
Translation from source code

function find (int a[] , int n) {
1 c = 0;

2 while (c < a.length ∧ a[c] 6= n) c = c + 1;

3 if (c ≥ a.length ∧ ∃x.(x ≥ 0 ∧ x < a.length ∧ a[x] = n))

4 ERROR;

}

τ2 ≡ pc = 2 ∧ c < a.length∧ a[c] 6= n ∧ pc′ = 2 ∧ c′ = c + 1

≡ ∃x. x = c ∧ a[x] 6= n

F. Alberti Lazy Abstraction with Interpolants for Arrays 8 / 22

Array-based Transition Systems
Translation from source code

function find (int a[] , int n) {
1 c = 0;

2 while (c < a.length ∧ a[c] 6= n) c = c + 1;

3 if (c ≥ a.length ∧ ∃x.(x ≥ 0 ∧ x < a.length ∧ a[x] = n))

4 ERROR;

}

τ2 ≡ pc = 2 ∧ c < a.length∧ a[c] 6= n ∧ pc′ = 2 ∧ c′ = c + 1

≡ ∃x. pc = 2 ∧ c < a.length∧ x = c ∧ a[x] 6= n ∧ pc′ = 2 ∧ c′ = c + 1

F. Alberti Lazy Abstraction with Interpolants for Arrays 8 / 22

Array-based Transition Systems
Translation from source code

function find (int a[] , int n) {
1 c = 0;

2 while (c < a.length ∧ a[c] 6= n) c = c + 1;

3 if (c ≥ a.length ∧ ∃x.(x ≥ 0 ∧ x < a.length ∧ a[x] = n))

4 ERROR;

}

τ3 ≡ pc = 2 ∧ c ≥ a.length ∧ pc′ = 3

F. Alberti Lazy Abstraction with Interpolants for Arrays 8 / 22

Array-based Transition Systems
Translation from source code

function find (int a[] , int n) {
1 c = 0;

2 while (c < a.length ∧ a[c] 6= n) c = c + 1;

3 if (c ≥ a.length ∧ ∃x.(x ≥ 0 ∧ x < a.length ∧ a[x] = n))

4 ERROR;

}

τ4 ≡ ∃x.pc = 2 ∧ x = c ∧ a[x] = n ∧ pc′ = 3

F. Alberti Lazy Abstraction with Interpolants for Arrays 8 / 22

Array-based Transition Systems
Translation from source code

function find (int a[] , int n) {
1 c = 0;

2 while (c < a.length ∧ a[c] 6= n) c = c + 1;

3 if (c ≥ a.length ∧ ∃x.(x ≥ 0 ∧ x < a.length ∧ a[x] = n))

4 ERROR;

}

τ5 ≡ pc = 3 ∧ c ≥ a.length ∧ ∃x. (x ≥ 0 ∧ x < a.length ∧ a[x] = n) ∧ pc′ = 4

F. Alberti Lazy Abstraction with Interpolants for Arrays 8 / 22

Array-based Transition Systems

An array-based system S = (v, {τh}) is safe w.r.t. an error state U(v)
iff the formulas

I(v(n)) ∧
(∨

h

τh(v(n),v(n−1))

)
∧ · · · ∧

(∨
h

τh(v(1),v(0))

)
∧ U(v(0))

are AEI -unsatisfiable for every n ≥ 0

F. Alberti Lazy Abstraction with Interpolants for Arrays 9 / 22

Outline

1 Array-based Transition Systems

2 Unwinding Array-based Transition Systems

3 Refinement with Interpolants

4 Completeness

5 Experiments

Labeled unwinding

A labeled unwinding of S = 〈v; {τh(v,v′)}h〉 is a quadruple (V,E,ME ,MV)

(V,E) is a finite rooted tree (let ε be the root)

ME ,MV are labeling functions for edges and vertices, respectively

(i) MV (ε) = U(v)

(ii) MV (v) is a qff of the kind ψ(i,a[i], c,d) s.t. MV (v) |=AE
I
pc = l

(iii) ME(v, w) is the matrix of some τ ∈ {τh(v,v′)}h and

MV (w) |=AE
I
pc = trg(τ)

MV (v) |=AE
I
pc = src(τ)

ME(v, w)(v,v′) ∧MV (w)(v′) |=AE
I
MV (v)(v)

(iv) for each τ ∈ {τh(v,v′)}h and every non-leaf vertex w ∈ V s.t.
MV (w) |=AE

I
pc = trg(τ), there exist v ∈ V and (v, w) ∈ E such that ME(v, w)

is the matrix of τ

F. Alberti Lazy Abstraction with Interpolants for Arrays 10 / 22

Unwinding Array-based Transition Systems
expand procedure

Theorem ([GR10])

If τ is in functional form and MV (v) is an ∃I-formulaa, the pre-image
of MV (v) w.r.t. τ(v,v′)

Pre(MV (v) , τ) , ∃v′. (τ(v,v′) ∧ MV (v)(v′))

is AEI -equivalent to an effectively computable ∃I-formula

aA formula of the kind ∃k.φ(k,a[k], c,d), where k have sort INDEX

1 Fix the format of the formulas we need to handle

2 It can be shown that the pre-image has all the INDEX variables of
the starting formula

F. Alberti Lazy Abstraction with Interpolants for Arrays 11 / 22

Unwinding Array-based Transition Systems
expand procedure

Theorem ([GR10])

If τ is in functional form and MV (v) is an ∃I-formulaa, the pre-image
of MV (v) w.r.t. τ(v,v′)

Pre(MV (v) , τ) , ∃v′. (τ(v,v′) ∧ MV (v)(v′))

is AEI -equivalent to an effectively computable ∃I-formula

aA formula of the kind ∃k.φ(k,a[k], c,d), where k have sort INDEX

1 Fix the format of the formulas we need to handle

2 It can be shown that the pre-image has all the INDEX variables of
the starting formula

F. Alberti Lazy Abstraction with Interpolants for Arrays 11 / 22

Unwinding Array-based Transition Systems

Complete unwinding

A label unwinding (V,E,MV ,ME) is complete iff there exists a covering, i.e., a set of
non-leaf vertexes C s.t.

ε ∈ C
for every v ∈ V and (v′, v) ∈ E, C covers v′, i.e.

MV (v′)∃ |=AE
I

∨
w∈C

MV (w)∃

Safe unwinding

A label unwinding (V,E,MV ,ME) is safe iff for all v ∈ V , if MV (v) |=AE
I
pc = lI

then MV (v) is AEI -unsatisfiable

F. Alberti Lazy Abstraction with Interpolants for Arrays 12 / 22

Unwinding Array-based Transition Systems

Complete unwinding

A label unwinding (V,E,MV ,ME) is complete iff there exists a covering, i.e., a set of
non-leaf vertexes C s.t.

ε ∈ C
for every v ∈ V and (v′, v) ∈ E, C covers v′, i.e.

MV (v′)∃ |=AE
I

∨
w∈C

MV (w)∃

Safe unwinding

A label unwinding (V,E,MV ,ME) is safe iff for all v ∈ V , if MV (v) |=AE
I
pc = lI

then MV (v) is AEI -unsatisfiable

F. Alberti Lazy Abstraction with Interpolants for Arrays 12 / 22

Unwinding Array-based Transition Systems
refine procedure

(V,E,MV ,ME) is not complete

exists v ∈ V with a consistent MV (v), MV (v) |=AE
I
pc = lI

Given the path v = v0
τm−−→ v1

τm−1−−−−→ · · · τ1−→ vm = ε, consider the formula

τ1(v(0),v(1)) ∧ · · · ∧ τm(v(m−1),v(m)) (1)

If (1) is AEI -satisfiable, return with unsafe

If (1) is AEI -unsatisfiable, retrieve interpolants for v0, . . . , vm to exclude the
infeasible counterexample from the model

F. Alberti Lazy Abstraction with Interpolants for Arrays 13 / 22

Unwinding Array-based Transition Systems
refine procedure

(V,E,MV ,ME) is not complete

exists v ∈ V with a consistent MV (v), MV (v) |=AE
I
pc = lI

Given the path v = v0
τm−−→ v1

τm−1−−−−→ · · · τ1−→ vm = ε, consider the formula

τ1(v(0),v(1)) ∧ · · · ∧ τm(v(m−1),v(m)) (1)

If (1) is AEI -satisfiable, return with unsafe

If (1) is AEI -unsatisfiable, retrieve interpolants for v0, . . . , vm to exclude the
infeasible counterexample from the model

F. Alberti Lazy Abstraction with Interpolants for Arrays 13 / 22

Unwinding Array-based Transition Systems
refine procedure

(V,E,MV ,ME) is not complete

exists v ∈ V with a consistent MV (v), MV (v) |=AE
I
pc = lI

Given the path v = v0
τm−−→ v1

τm−1−−−−→ · · · τ1−→ vm = ε, consider the formula

τ1(v(0),v(1)) ∧ · · · ∧ τm(v(m−1),v(m)) (1)

If (1) is AEI -satisfiable, return with unsafe

If (1) is AEI -unsatisfiable, retrieve interpolants for v0, . . . , vm to exclude the
infeasible counterexample from the model

F. Alberti Lazy Abstraction with Interpolants for Arrays 13 / 22

Unwinding Array-based Transition Systems
refine procedure

(V,E,MV ,ME) is not complete

exists v ∈ V with a consistent MV (v), MV (v) |=AE
I
pc = lI

Given the path v = v0
τm−−→ v1

τm−1−−−−→ · · · τ1−→ vm = ε, consider the formula

τ1(v(0),v(1)) ∧ · · · ∧ τm(v(m−1),v(m)) (1)

If (1) is AEI -satisfiable, return with unsafe

If (1) is AEI -unsatisfiable, retrieve interpolants for v0, . . . , vm to exclude the
infeasible counterexample from the model

F. Alberti Lazy Abstraction with Interpolants for Arrays 13 / 22

Outline

1 Array-based Transition Systems

2 Unwinding Array-based Transition Systems

3 Refinement with Interpolants

4 Completeness

5 Experiments

Refinement
Checking satisfiability of the counterexample

Theorem

If TI- and TE-satisfiability is decidable, the AEI -satisfiability of formulas like

τ1(v(0),v(1)) ∧ · · · ∧ τm(v(m−1),v(m))

is decidable.

Counterexample made by the conjunction of formulas of the kind

∃k

φ(k,a[k], c,d) ∧
a′ = λj. G(k,a[k], c,d, j,a[j]) ∧
c′ = H(k,a[k], c,d) ∧ d′ = K(k,a[k], c,d))



1 Skolemize k

2 (Selective) Instantiation of j with Skolem constants1

3 Propagate equalities and exploit decision procedures for TI and TE

1a′ = λj.G(. . .) is equivalent to ∀j.a′[j] = G(. . .).
F. Alberti Lazy Abstraction with Interpolants for Arrays 14 / 22

Refinement
Checking satisfiability of the counterexample

Theorem

If TI- and TE-satisfiability is decidable, the AEI -satisfiability of formulas like

τ1(v(0),v(1)) ∧ · · · ∧ τm(v(m−1),v(m))

is decidable.

Counterexample made by the conjunction of formulas of the kind

∃k

φ(k,a[k], c,d) ∧
a′ = λj. G(k,a[k], c,d, j,a[j]) ∧
c′ = H(k,a[k], c,d) ∧ d′ = K(k,a[k], c,d))



1 Skolemize k

2 (Selective) Instantiation of j with Skolem constants1

3 Propagate equalities and exploit decision procedures for TI and TE

1a′ = λj.G(. . .) is equivalent to ∀j.a′[j] = G(. . .).
F. Alberti Lazy Abstraction with Interpolants for Arrays 14 / 22

Refinement
Checking satisfiability of the counterexample

Theorem

If TI- and TE-satisfiability is decidable, the AEI -satisfiability of formulas like

τ1(v(0),v(1)) ∧ · · · ∧ τm(v(m−1),v(m))

is decidable.

Counterexample made by the conjunction of formulas of the kind

∃k

φ(k,a[k], c,d) ∧
a′ = λj. G(k,a[k], c,d, j,a[j]) ∧
c′ = H(k,a[k], c,d) ∧ d′ = K(k,a[k], c,d))



1 Skolemize k

2 (Selective) Instantiation of j with Skolem constants1

3 Propagate equalities and exploit decision procedures for TI and TE

1a′ = λj.G(. . .) is equivalent to ∀j.a′[j] = G(. . .).
F. Alberti Lazy Abstraction with Interpolants for Arrays 14 / 22

Refinement
Checking satisfiability of the counterexample

Theorem

If TI- and TE-satisfiability is decidable, the AEI -satisfiability of formulas like

τ1(v(0),v(1)) ∧ · · · ∧ τm(v(m−1),v(m))

is decidable.

Counterexample made by the conjunction of formulas of the kind

∃k

φ(k,a[k], c,d) ∧
a′ = λj. G(k,a[k], c,d, j,a[j]) ∧
c′ = H(k,a[k], c,d) ∧ d′ = K(k,a[k], c,d))



1 Skolemize k

2 (Selective) Instantiation of j with Skolem constants1

3 Propagate equalities and exploit decision procedures for TI and TE

1a′ = λj.G(. . .) is equivalent to ∀j.a′[j] = G(. . .).
F. Alberti Lazy Abstraction with Interpolants for Arrays 14 / 22

Refinement
Checking satisfiability of the counterexample

Theorem

If TI- and TE-satisfiability is decidable, the AEI -satisfiability of formulas like

τ1(v(0),v(1)) ∧ · · · ∧ τm(v(m−1),v(m))

is decidable.

Counterexample made by the conjunction of formulas of the kind

∃k

φ(k,a[k], c,d) ∧
a′ = λj. G(k,a[k], c,d, j,a[j]) ∧
c′ = H(k,a[k], c,d) ∧ d′ = K(k,a[k], c,d))



1 Skolemize k

2 (Selective) Instantiation of j with Skolem constants1

3 Propagate equalities and exploit decision procedures for TI and TE

1a′ = λj.G(. . .) is equivalent to ∀j.a′[j] = G(. . .).
F. Alberti Lazy Abstraction with Interpolants for Arrays 14 / 22

Refinement
Retrieving interpolants

Theorem

Given an AEI -unsatisfiable quantifier-free formula ψ1 ∧ ψ2, if

TI and TE admit quantifier-free interpolation algorithms

all INDEX variables in ψ2 under the scope of [] occur also in ψ1

Then, there exists a quantifier-free formula ψ0 such that:

(i) ψ2 |=AE
I
ψ0

(ii) ψ0 ∧ ψ1 is AEI -unsatisfiable

(iii) all free variables occurring in ψ0 occur both in ψ1 and ψ2

F. Alberti Lazy Abstraction with Interpolants for Arrays 15 / 22

Refinement
Applying interpolants

function find (int a[] , int n) {
1 c = 0;

2 while (c < a.length ∧ a[c] 6= n) c = c + 1;

3 if (c ≥ a.length ∧ ∃x.(x ≥ 0 ∧ x < a.length ∧ a[x] = n))

4 ERROR;

}

εv1v3v8v25

{pc = 4}




pc = 3 ∧
c > 0 ∧ a[i0] = n ∧
i0 < c ∧ a.length ≥ 1









pc = 2 ∧
c > 0 ∧
a[i0] = n





{pc = 2}{pc = 1}

τ1τ2τ3τ5

F. Alberti Lazy Abstraction with Interpolants for Arrays 16 / 22

Refinement
Applying interpolants

function find (int a[] , int n) {
1 c = 0;

2 while (c < a.length ∧ a[c] 6= n) c = c + 1;

3 if (c ≥ a.length ∧ ∃x.(x ≥ 0 ∧ x < a.length ∧ a[x] = n))

4 ERROR;

}

εv1v3v8v25

{pc = 4}





pc = 3 ∧
c > 0 ∧ a[i0] = n ∧
i0 < c ∧ a.length ≥ 1

i0 ≤ a.length









pc = 2 ∧
c > 0 ∧
a[i0] = n ∧

i0 ≤ c









pc = 2 ∧

i0 ≤ c





{pc = 1}
{⊥}

τ1τ2τ3τ5

(pc = 3 ∧ c > 0 ∧ a.length ≥ 1)⇒ ∀i. ((i < c ∧ i ≤ a.length)⇒ a[i] 6= n)

F. Alberti Lazy Abstraction with Interpolants for Arrays 16 / 22

Refinement
Applying interpolants

function find (int a[] , int n) {
1 c = 0;

2 while (c < a.length ∧ a[c] 6= n) c = c + 1;

3 if (c ≥ a.length ∧ ∃x.(x ≥ 0 ∧ x < a.length ∧ a[x] = n))

4 ERROR;

}

εv1v3v8v25

{pc = 4}





pc = 3 ∧
c > 0 ∧ a[i0] = n ∧
i0 < c ∧ a.length ≥ 1

i0 ≤ a.length









pc = 2 ∧
c > 0 ∧
a[i0] = n ∧

i0 ≤ c









pc = 2 ∧

i0 ≤ c





{pc = 1}
{⊥}

τ1τ2τ3τ5

(pc = 3 ∧ c > 0 ∧ a.length ≥ 1)⇒ ∀i. ((i < c ∧ i ≤ a.length)⇒ a[i] 6= n)

F. Alberti Lazy Abstraction with Interpolants for Arrays 16 / 22

Outline

1 Array-based Transition Systems

2 Unwinding Array-based Transition Systems

3 Refinement with Interpolants

4 Completeness

5 Experiments

Completeness

Covering set C: for every v ∈ V and (v′, v) ∈ E,

MV (v′)∃ |=AE
I

∨
w∈C

MV (w)∃

Computation of the covering set C can be reduced to repeatedly check the
AEI -unsatisfiability of ∃A,I∀I -sentences.

Theorem ([GR10])

If ΣI does not contain function symbols and CI is closed under substructures, the
AEI -satisfiability of formulas of the form

∃a ∃c ∃d ∃i ∀j ψ(i, j,a[i],a[j], c,d)

is decidable, where ψ is a quantifier-free ΣI ∪ ΣE-formula.

F. Alberti Lazy Abstraction with Interpolants for Arrays 17 / 22

Completeness

Covering set C: for every v ∈ V and (v′, v) ∈ E,

MV (v′)∃ |=AE
I

∨
w∈C

MV (w)∃

Computation of the covering set C can be reduced to repeatedly check the
AEI -unsatisfiability of ∃A,I∀I -sentences.

Theorem ([GR10])

If ΣI does not contain function symbols and CI is closed under substructures, the
AEI -satisfiability of formulas of the form

∃a ∃c ∃d ∃i ∀j ψ(i, j,a[i],a[j], c,d)

is decidable, where ψ is a quantifier-free ΣI ∪ ΣE-formula.

F. Alberti Lazy Abstraction with Interpolants for Arrays 17 / 22

Completeness

Covering set C: for every v ∈ V and (v′, v) ∈ E,

MV (v′)∃ |=AE
I

∨
w∈C

MV (w)∃

Computation of the covering set C can be reduced to repeatedly check the
AEI -unsatisfiability of ∃A,I∀I -sentences.

Theorem ([GR10])

If ΣI does not contain function symbols and CI is closed under substructures, the
AEI -satisfiability of formulas of the form

∃a ∃c ∃d ∃i ∀j ψ(i, j,a[i],a[j], c,d)

is decidable, where ψ is a quantifier-free ΣI ∪ ΣE-formula.

F. Alberti Lazy Abstraction with Interpolants for Arrays 17 / 22

Completeness (and Termination)
Discussion

Hypothesis ensuring the completeness of the covering test are
rather restrictive

Those ensuring termination are even more restrictive

If they are not met, unwind is incomplete, but still sound

Only termination is involved

What’s the behavior of unwind in practice (even on systems not
meeting termination hypothesis)?

F. Alberti Lazy Abstraction with Interpolants for Arrays 18 / 22

Completeness (and Termination)
Discussion

Hypothesis ensuring the completeness of the covering test are
rather restrictive

Those ensuring termination are even more restrictive

If they are not met, unwind is incomplete, but still sound

Only termination is involved

What’s the behavior of unwind in practice (even on systems not
meeting termination hypothesis)?

F. Alberti Lazy Abstraction with Interpolants for Arrays 18 / 22

Completeness (and Termination)
Discussion

Hypothesis ensuring the completeness of the covering test are
rather restrictive

Those ensuring termination are even more restrictive

If they are not met, unwind is incomplete, but still sound

Only termination is involved

What’s the behavior of unwind in practice (even on systems not
meeting termination hypothesis)?

F. Alberti Lazy Abstraction with Interpolants for Arrays 18 / 22

Outline

1 Array-based Transition Systems

2 Unwinding Array-based Transition Systems

3 Refinement with Interpolants

4 Completeness

5 Experiments

Experiments

safari (SMT-based Abstraction For Arrays with Interpolants) -
http://www.verify.inf.usi.ch/safari

Integration with OpenSMT for SMT-solving

Experiments over imperative programs handling arrays

F. Alberti Lazy Abstraction with Interpolants for Arrays 19 / 22

http://www.verify.inf.usi.ch/safari

Refinement
Experiments

Benchmark Time (s) Nodes SMT-calls Iter. Result

find (v1) 0.3 5 192 3 SAFE
find (v2) 0.07 5 48 1 SAFE
initialization 0.1 5 96 1 SAFE
max in array 0.9 72 1192 8 SAFE
partition 0.08 20 62 0 SAFE
strcmp 0.4 14 329 4 SAFE
strcpy 0.03 3 15 0 SAFE
vararg 0.03 5 17 0 SAFE
integers 0.02 5 19 0 SAFE

init and test 0.3 27 375 3 SAFE
binary sort 0.3 48 457 2 SAFE
selection sort 0.6 15 478 4 SAFE

Intel i7 @2.66 GHz, equipped with 4GB of RAM and running OSX 10.7

More examples on http://verify.inf.usi.ch/safari

F. Alberti Lazy Abstraction with Interpolants for Arrays 20 / 22

Related work

Ghost variables [FQ02]

Index predicates [LB07]

Range predicates [JM07]

Theorem prover based [KV09, HKV11]

Abstract interpretation [CCL11, HP08, DDA10]

F. Alberti Lazy Abstraction with Interpolants for Arrays 21 / 22

Conclusions

A new framework for software model checking of programs with
arrays:

1 Backward reachability, natural handling of quantified predicates for
unbounded arrays (mcmt)

2 Lazy-abstraction

3 New interpolation algorithm

4 Efficient (all times below 1 second)

Future work

New powerful heuristics for “tuning” interpolation and help
convergence (currently under submission)

Use safari as invariant generator

Other classes of systems (e.g., distributed algorithms)

F. Alberti Lazy Abstraction with Interpolants for Arrays 22 / 22

Conclusions

A new framework for software model checking of programs with
arrays:

1 Backward reachability, natural handling of quantified predicates for
unbounded arrays (mcmt)

2 Lazy-abstraction

3 New interpolation algorithm

4 Efficient (all times below 1 second)

Future work

New powerful heuristics for “tuning” interpolation and help
convergence (currently under submission)

Use safari as invariant generator

Other classes of systems (e.g., distributed algorithms)

F. Alberti Lazy Abstraction with Interpolants for Arrays 22 / 22

Conclusions

A new framework for software model checking of programs with
arrays:

1 Backward reachability, natural handling of quantified predicates for
unbounded arrays (mcmt)

2 Lazy-abstraction

3 New interpolation algorithm

4 Efficient (all times below 1 second)

Future work

New powerful heuristics for “tuning” interpolation and help
convergence (currently under submission)

Use safari as invariant generator

Other classes of systems (e.g., distributed algorithms)

F. Alberti Lazy Abstraction with Interpolants for Arrays 22 / 22

Conclusions

A new framework for software model checking of programs with
arrays:

1 Backward reachability, natural handling of quantified predicates for
unbounded arrays (mcmt)

2 Lazy-abstraction

3 New interpolation algorithm

4 Efficient (all times below 1 second)

Future work

New powerful heuristics for “tuning” interpolation and help
convergence (currently under submission)

Use safari as invariant generator

Other classes of systems (e.g., distributed algorithms)

F. Alberti Lazy Abstraction with Interpolants for Arrays 22 / 22

Conclusions

A new framework for software model checking of programs with
arrays:

1 Backward reachability, natural handling of quantified predicates for
unbounded arrays (mcmt)

2 Lazy-abstraction

3 New interpolation algorithm

4 Efficient (all times below 1 second)

Future work

New powerful heuristics for “tuning” interpolation and help
convergence (currently under submission)

Use safari as invariant generator

Other classes of systems (e.g., distributed algorithms)

F. Alberti Lazy Abstraction with Interpolants for Arrays 22 / 22

Conclusions

A new framework for software model checking of programs with
arrays:

1 Backward reachability, natural handling of quantified predicates for
unbounded arrays (mcmt)

2 Lazy-abstraction

3 New interpolation algorithm

4 Efficient (all times below 1 second)

Future work

New powerful heuristics for “tuning” interpolation and help
convergence (currently under submission)

Use safari as invariant generator

Other classes of systems (e.g., distributed algorithms)

F. Alberti Lazy Abstraction with Interpolants for Arrays 22 / 22

Conclusions

A new framework for software model checking of programs with
arrays:

1 Backward reachability, natural handling of quantified predicates for
unbounded arrays (mcmt)

2 Lazy-abstraction

3 New interpolation algorithm

4 Efficient (all times below 1 second)

Future work

New powerful heuristics for “tuning” interpolation and help
convergence (currently under submission)

Use safari as invariant generator

Other classes of systems (e.g., distributed algorithms)

F. Alberti Lazy Abstraction with Interpolants for Arrays 22 / 22

Conclusions

A new framework for software model checking of programs with
arrays:

1 Backward reachability, natural handling of quantified predicates for
unbounded arrays (mcmt)

2 Lazy-abstraction

3 New interpolation algorithm

4 Efficient (all times below 1 second)

Future work

New powerful heuristics for “tuning” interpolation and help
convergence (currently under submission)

Use safari as invariant generator

Other classes of systems (e.g., distributed algorithms)

F. Alberti Lazy Abstraction with Interpolants for Arrays 22 / 22

Conclusions

A new framework for software model checking of programs with
arrays:

1 Backward reachability, natural handling of quantified predicates for
unbounded arrays (mcmt)

2 Lazy-abstraction

3 New interpolation algorithm

4 Efficient (all times below 1 second)

Future work

New powerful heuristics for “tuning” interpolation and help
convergence (currently under submission)

Use safari as invariant generator

Other classes of systems (e.g., distributed algorithms)

F. Alberti Lazy Abstraction with Interpolants for Arrays 22 / 22

Thank you!
Questions?

francesco.alberti@usi.ch

www.inf.usi.ch/phd/alberti

References I

P. Cousot, R. Cousot, and F. Logozzo.
A Parametric Segmentation Functor for Fully Automatic and
Scalable Array Content Analysis.
In POPL, 2011.

I. Dillig, T. Dillig, and A. Aiken.
Fluid Updates: Beyond Strong vs. Weak Updates.
In Programming Languages and Systems. 2010.

C. Flanagan and S. Qadeer.
Predicate abstraction for software verification.
In POPL, pages 191–202, 2002.

S. Ghilardi and S. Ranise.
Backward Reachability of Array-based Systems by SMT solving:
Termination and Invariant Synthesis.
LMCS, 6(4), 2010.

F. Alberti Lazy Abstraction with Interpolants for Arrays 24 / 22

References II

Susanne Graf and Hassen Säıdi.
Construction of abstract state graphs with pvs.
In Orna Grumberg, editor, CAV, volume 1254 of Lecture Notes in
Computer Science, pages 72–83. Springer, 1997.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and
Kenneth L. McMillan.
Abstractions from proofs.
In Neil D. Jones and Xavier Leroy, editors, POPL, pages 232–244.
ACM, 2004.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.
Lazy Abstraction.
In POPL, 2002.

F. Alberti Lazy Abstraction with Interpolants for Arrays 25 / 22

References III

K. Hoder, L. Kovács, and A. Voronkov.
Invariant Generation in Vampire.
In TACAS, pages 60–64, 2011.

N. Halbwachs and Mathias P.
Discovering Properties about Arrays in Simple Programs.
In PLDI’08, pages 339–348, 2008.

R. Jhala and K. McMillan.
Array Abstractions from Proofs.
In CAV, 2007.

D. Kapur, R. Majumdar, and C. Zarba.
Interpolation for Data Structures.
In SIGSOFT’06/FSE-14, pages 105–116, 2006.

F. Alberti Lazy Abstraction with Interpolants for Arrays 26 / 22

References IV

L. Kovács and A. Voronkov.
Finding Loop Invariants for Programs over Arrays Using a
Theorem Prover.
In FASE, pages 470–485, 2009.

S. Lahiri and R. Bryant.
Predicate Abstraction with Indexed Predicates.
TOCL, 9(1), 2007.

Kenneth L. McMillan.
Lazy abstraction with interpolants.
In Thomas Ball and Robert B. Jones, editors, CAV, volume 4144 of
Lecture Notes in Computer Science, pages 123–136. Springer, 2006.

F. Alberti Lazy Abstraction with Interpolants for Arrays 27 / 22

	Array-based Transition Systems
	Unwinding Array-based Transition Systems
	Refinement with Interpolants
	Completeness
	Experiments

