
Definability of Accelerated Relations in a Theory of
Arrays and its Applications

F. Alberti1, S. Ghilardi2, N. Sharygina1

1University of Lugano, Switzerland
2 University of Milan, Italy

9th International Symposium on Frontiers of Combining Systems

September 18, 2013

Context: Reachability analysis

ST = (v , I(v) , τ(v,v′))

Ingredients: transition system ST and a safety property P (v)

Reachability analysis: establish if it is possible to reach ¬P (v)

⇒ T is Presburger arithmetic enriched with free function symbols

satisfiability and validity with respect to structures having the standard
structure of natural numbers as reduct

v contains free unary function symbols (a) and free constants (c)

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 1 / 24

Context: Reachability analysis

ST = (v , I(v) , τ(v,v′))

Ingredients: transition system ST and a safety property P (v)

Reachability analysis: establish if it is possible to reach ¬P (v)

⇒ T is Presburger arithmetic enriched with free function symbols

satisfiability and validity with respect to structures having the standard
structure of natural numbers as reduct

v contains free unary function symbols (a) and free constants (c)

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 1 / 24

Context: Reachability analysis
Backward search

We iteratively compute the preimage of ¬P applying backward τ

¬PI

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 2 / 24

Context: Reachability analysis
Backward search

We iteratively compute the preimage of ¬P applying backward τ

R1 ¬PI

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 2 / 24

Context: Reachability analysis
Backward search

We iteratively compute the preimage of ¬P applying backward τ

R2 R1 ¬PI

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 2 / 24

Context: Reachability analysis
Backward search

We iteratively compute the preimage of ¬P applying backward τ

Rn R2 R1 ¬PI

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 2 / 24

Context: Reachability analysis
Backward search

We iteratively compute the preimage of ¬P applying backward τ

... until we find an intersection with the set of initial states...

Rn R2 R1 ¬PI

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 2 / 24

Context: Reachability analysis
Backward search

We iteratively compute the preimage of ¬P applying backward τ

... until we find an intersection with the set of initial states...

... or a (global) fix-point.

Rn R2 R1 ¬PI

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 2 / 24

Context: Reachability analysis
Backward search

Reduce intersection and fix-point test to SMT problems:

Intersection test: is I ∧Rn T -satisfiable?

Rn R2 R1 ¬PI

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 3 / 24

Context: Reachability analysis
Backward search

Reduce intersection and fix-point test to SMT problems:

Intersection test: is I ∧Rn T -satisfiable?

Fix-point test: is Rn+1 → Rn T -valid?

...or dually: is Rn+1 ∧ ¬Rn T -unsatisfiable?

Rn R2 R1 ¬PI

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 3 / 24

Context: Reachability analysis
Backward search - divergence

Precise reachability analysis (usually) diverges on infinite-state
systems

Common experience with verification of annotated code

⇒ Acceleration can help in limiting divergence!

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 4 / 24

Context: Reachability analysis
Backward search - divergence

Precise reachability analysis (usually) diverges on infinite-state
systems

Common experience with verification of annotated code

⇒ Acceleration can help in limiting divergence!

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 4 / 24

Context: Reachability analysis
Backward search - divergence

Precise reachability analysis (usually) diverges on infinite-state
systems

Common experience with verification of annotated code

⇒ Acceleration can help in limiting divergence!

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 4 / 24

Acceleration
Example1

procedure Find(int e) {
lI i = 0;

lL while (i < L ∧ a[i] 6= e) {
i = i + 1;

}
lF assert (∀x.(0 ≤ x < i)→ a[x] 6= e);

}

1Assume we exit the loop because we reach the end of the array.
F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 5 / 24

Acceleration
Example1

procedure Find(int e) {
lI i = 0;

lL while (i < L ∧ a[i] 6= e) {
i = i + 1;

}
lF assert (∀x.(0 ≤ x < i)→ a[x] 6= e);

}

τ1 := pc = lL ∧ i < L ∧ a[i] 6= e︸ ︷︷ ︸
guard

∧ i′ = i + 1︸ ︷︷ ︸
update

1Assume we exit the loop because we reach the end of the array.
F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 5 / 24

Acceleration
Example1

τ1 := pc = lL ∧ i < L ∧ a[i] 6= e︸ ︷︷ ︸
guard

∧ i′ = i + 1︸ ︷︷ ︸
update

1Assume we exit the loop because we reach the end of the array.
F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 5 / 24

Acceleration
Example1

x i

a · · · e · · ·

∃x.0 ≤ x ∧ x < i ∧ a[x] = e ∧ i ≥ L

τ1 := pc = lL ∧ i < L ∧ a[i] 6= e︸ ︷︷ ︸
guard

∧ i′ = i + 1︸ ︷︷ ︸
update

1Assume we exit the loop because we reach the end of the array.
F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 5 / 24

Acceleration
Example1

x i

×a · · · e · · ·

∃x.0 ≤ x ∧ x < i+ 1 ∧ a[x] = e ∧ i+ 1 = L ∧
a[i] 6= e

τ1 := pc = lL ∧ i < L ∧ a[i] 6= e︸ ︷︷ ︸
guard

∧ i′ = i + 1︸ ︷︷ ︸
update

1Assume we exit the loop because we reach the end of the array.
F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 5 / 24

Acceleration
Example1

x

××

i

a · · · e · · ·

∃x.0 ≤ x ∧ x < i+ 2 ∧ a[x] = e ∧ i+ 2 = L ∧
a[i] 6= e ∧ a[i+ 1] 6= e

τ1 := pc = lL ∧ i < L ∧ a[i] 6= e︸ ︷︷ ︸
guard

∧ i′ = i + 1︸ ︷︷ ︸
update

1Assume we exit the loop because we reach the end of the array.
F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 5 / 24

Acceleration
Example1

x

×××

i

a · · · e · · ·

∃x.0 ≤ x ∧ x < i+ 3 ∧ a[x] = e ∧ i+ 3 = L ∧
a[i] 6= e ∧ a[i+ 1] 6= e ∧ a[i+ 2] 6= e

τ1 := pc = lL ∧ i < L ∧ a[i] 6= e︸ ︷︷ ︸
guard

∧ i′ = i + 1︸ ︷︷ ︸
update

1Assume we exit the loop because we reach the end of the array.
F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 5 / 24

Acceleration
Example1

x

×××· · ·

i

a · · · e · · ·

∃x.0 ≤ x ∧ x < i+ n ∧ a[x] = e ∧ i+ n = L ∧
n−1∧
k=0

a[i+ k] 6= e

τ1 := pc = lL ∧ i < L ∧ a[i] 6= e︸ ︷︷ ︸
guard

∧ i′ = i + 1︸ ︷︷ ︸
update

1Assume we exit the loop because we reach the end of the array.
F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 5 / 24

Acceleration
Preventing divergence

Find control-flow graph: I l1 P̄
τ0

τ1

τ2

Precise backward reachability

P̄

v1 ⊥

v2 ⊥

v3 ⊥

τ2

τ0

τ1

τ0

τ1

τ0

τ1

With accelerated transitions

(desired behavior)

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 6 / 24

Acceleration
Preventing divergence

Find control-flow graph: I l1 P̄
τ0

τ1

τ2

Precise backward reachability

P̄

v1 ⊥

v2 ⊥

v3 ⊥

τ2

τ0

τ1

τ0

τ1

τ0

τ1

With accelerated transitions

(desired behavior)

P̄

v1

v2v+2

v3v+3

v1

⊥

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 6 / 24

Acceleration
Preventing divergence

Find control-flow graph: I l1 P̄
τ0

τ1

τ2

Precise backward reachability

P̄

v1 ⊥

v2 ⊥

v3 ⊥

τ2

τ0

τ1

τ0

τ1

τ0

τ1

With accelerated transitions

(desired behavior)

P̄

v1

v2v+2

v3v+3

v1

⊥

τ2

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 6 / 24

Acceleration
Preventing divergence

Find control-flow graph: I l1 P̄
τ0

τ1

τ2

Precise backward reachability

P̄

v1 ⊥

v2 ⊥

v3 ⊥

τ2

τ0

τ1

τ0

τ1

τ0

τ1

With accelerated transitions

(desired behavior)

P̄

v1

v2v+2

v3v+3

⊥

⊥

τ2

τ0

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 6 / 24

Acceleration
Preventing divergence

Find control-flow graph: I l1 P̄
τ0

τ1

τ2

Precise backward reachability

P̄

v1 ⊥

v2 ⊥

v3 ⊥

τ2

τ0

τ1

τ0

τ1

τ0

τ1

With accelerated transitions

(desired behavior)

P̄

v1

v2v+2

v3v+3

⊥

⊥

τ2

τ1

τ0

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 6 / 24

Acceleration
Preventing divergence

Find control-flow graph: I l1 P̄
τ0

τ1

τ2

Precise backward reachability

P̄

v1 ⊥

v2 ⊥

v3 ⊥

τ2

τ0

τ1

τ0

τ1

τ0

τ1

With accelerated transitions

(desired behavior)

P̄

v1

v2v+2

v3v+3

⊥

⊥

τ2

τ1τ+1

τ0

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 6 / 24

Acceleration
Preventing divergence

Find control-flow graph: I l1 P̄
τ0

τ1

τ2

Precise backward reachability

P̄

v1 ⊥

v2 ⊥

v3 ⊥

τ2

τ0

τ1

τ0

τ1

τ0

τ1

With accelerated transitions

(desired behavior)

P̄

v1

v2v+2

v3v+3

⊥

⊥

τ2

τ1τ+1

τ0

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 6 / 24

Acceleration
Preventing divergence

Find control-flow graph: I l1 P̄
τ0

τ1

τ2

Precise backward reachability

P̄

v1 ⊥

v2 ⊥

v3 ⊥

τ2

τ0

τ1

τ0

τ1

τ0

τ1

With accelerated transitions

(desired behavior)

P̄

v1

v2v+2

v3v+3

⊥

⊥

τ2

τ1τ+1

τ0

τ0

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 6 / 24

Acceleration
Preventing divergence

Find control-flow graph: I l1 P̄
τ0

τ1

τ2

Precise backward reachability

P̄

v1 ⊥

v2 ⊥

v3 ⊥

τ2

τ0

τ1

τ0

τ1

τ0

τ1

With accelerated transitions

(desired behavior)

P̄

v1

v2v+2

v3v+3

⊥

⊥

τ2

τ1τ+1

τ1

τ0

τ0

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 6 / 24

Acceleration
Preventing divergence

Find control-flow graph: I l1 P̄
τ0

τ1

τ2

Precise backward reachability

P̄

v1 ⊥

v2 ⊥

v3 ⊥

τ2

τ0

τ1

τ0

τ1

τ0

τ1

With accelerated transitions

(desired behavior)

P̄

v1

v2v+2

v3v+3

⊥

⊥

τ2

τ1τ+1

τ1

τ0

τ0

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 6 / 24

Acceleration
Preventing divergence

Find control-flow graph: I l1 P̄
τ0

τ1

τ2

Precise backward reachability

P̄

v1 ⊥

v2 ⊥

v3 ⊥

τ2

τ0

τ1

τ0

τ1

τ0

τ1

With accelerated transitions

(desired behavior)

P̄

v1

v2v+2

v3v+3

⊥

⊥

τ2

τ1τ+1

τ1τ+1

τ0

τ0

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 6 / 24

Acceleration
Preventing divergence

Find control-flow graph: I l1 P̄
τ0

τ1

τ2

Precise backward reachability

P̄

v1 ⊥

v2 ⊥

v3 ⊥

τ2

τ0

τ1

τ0

τ1

τ0

τ1

With accelerated transitions

(desired behavior)

P̄

v1

v2v+2

v3v+3

⊥

⊥

τ2

τ1τ+1

τ1τ+1

τ0

τ0

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 6 / 24

Acceleration
State of the art

Acceleration: Transitive closure τ+ of transitions τ encoding cyclic
actions

Challenges:

� In general transitive closure cannot be expressed in FOL

Only some (important) classes of τ ’s allow the definability of τ+

Polling-based systems [BBD+02]
Imperative programs over integers [BIK10]

What about arrays?

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 7 / 24

Acceleration
State of the art

Acceleration: Transitive closure τ+ of transitions τ encoding cyclic
actions

Challenges:

� In general transitive closure cannot be expressed in FOL

Only some (important) classes of τ ’s allow the definability of τ+

Polling-based systems [BBD+02]
Imperative programs over integers [BIK10]

What about arrays?

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 7 / 24

Acceleration
State of the art

Acceleration: Transitive closure τ+ of transitions τ encoding cyclic
actions

Challenges:

� In general transitive closure cannot be expressed in FOL

Only some (important) classes of τ ’s allow the definability of τ+

Polling-based systems [BBD+02]
Imperative programs over integers [BIK10]

What about arrays?

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 7 / 24

Acceleration
State of the art

Acceleration: Transitive closure τ+ of transitions τ encoding cyclic
actions

Challenges:

� In general transitive closure cannot be expressed in FOL

Only some (important) classes of τ ’s allow the definability of τ+

Polling-based systems [BBD+02]
Imperative programs over integers [BIK10]

What about arrays?

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 7 / 24

Acceleration for arrays
Contributions

In theory:

Identification of classes of transitions τ over arrays admitting
definable acceleration

Determine the price to pay for expressing τ+

In practice:

Template-based solution

4 High degree of automation
4 Computationally cheap

Combination with abstraction-based frameworks

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 8 / 24

Acceleration for arrays
Contributions

In theory:

Identification of classes of transitions τ over arrays admitting
definable acceleration

Determine the price to pay for expressing τ+

In practice:

Template-based solution

4 High degree of automation
4 Computationally cheap

Combination with abstraction-based frameworks

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 8 / 24

Acceleration for arrays
Contributions

In theory:

Identification of classes of transitions τ over arrays admitting
definable acceleration

Determine the price to pay for expressing τ+

In practice:

Template-based solution

4 High degree of automation
4 Computationally cheap

Combination with abstraction-based frameworks

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 8 / 24

Acceleration for arrays
Contributions

In theory:

Identification of classes of transitions τ over arrays admitting
definable acceleration

Determine the price to pay for expressing τ+

In practice:

Template-based solution

4 High degree of automation
4 Computationally cheap

Combination with abstraction-based frameworks

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 8 / 24

Acceleration for arrays
Example

τ1 := pc = lL ∧ i < L ∧ a[i] 6= e︸ ︷︷ ︸
guard

∧ i′ = i + 1︸ ︷︷ ︸
update

⇓

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 9 / 24

Acceleration for arrays
Example

τ1 := pc = lL ∧ i < L ∧ a[i] 6= e︸ ︷︷ ︸
guard

∧ i′ = i + 1︸ ︷︷ ︸
update

⇓

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 9 / 24

Acceleration for arrays
Example

τ1 := pc = lL ∧ i < L ∧ a[i] 6= e︸ ︷︷ ︸
guard

∧ i′ = i + 1︸ ︷︷ ︸
update

⇓

τ+1 := ∃y.

 y > 0 ∧ pc = lL ∧
∀j.(i ≤ j < i + y → j < L ∧ a[j] 6= e)

i′ = i + y



F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 9 / 24

Acceleration for arrays
Example

τ1 := pc = lL ∧ i < L ∧ a[i] 6= e︸ ︷︷ ︸
guard

∧ i′ = i + 1︸ ︷︷ ︸
update

⇓

τ+1 := ∃y.

 y > 0 ∧ pc = lL ∧
∀j.(i ≤ j < i + y → j < L ∧ a[j] 6= e)

i′ = i + y



F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 9 / 24

The formal framework
Iterators

Definition (Iterators)

A tuple of m-ary terms u(x) is said to be an iterator iff there exists an
m-tuple of m+ 1-ary terms u∗(x, y) such that for any natural number
n it happens that the formula

un(x) = u∗(x, n̄)

is valid.

Example
u(x) := x+ 1

u∗(x, y) := x+ y

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 10 / 24

The formal framework
Iterators

Definition (Iterators)

A tuple of m-ary terms u(x) is said to be an iterator iff there exists an
m-tuple of m+ 1-ary terms u∗(x, y) such that for any natural number
n it happens that the formula

un(x) = u∗(x, n̄)

is valid.

Example
u(x) := x+ 1

u∗(x, y) := x+ y

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 10 / 24

The formal framework
Iterators

Definition (Iterators)

A tuple of m-ary terms u(x) is said to be an iterator iff there exists an
m-tuple of m+ 1-ary terms u∗(x, y) such that for any natural number
n it happens that the formula

un(x) = u∗(x, n̄)

is valid.

Example
u(x) := x+ 1

u∗(x, y) := x+ y

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 10 / 24

The formal framework
Selectors

Definition (Selectors)

Given an iterator u(x), an m-ary term κ(x1, . . . , xm) is a selector for
u(x) iff there is an m+ 1-ary term ι(x1, . . . , xm, y) yielding the validity
of the formula

z = κ(u∗(x, y))→ y = ι(x, z)

Most likely κ is a projection

Can a cell z be reached in m iterations?

The number ι(x, z) gives “the only possible candidate” y number
of iterations

z = κ(u∗(x, y)) checks if the candidate y is correct

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 11 / 24

The formal framework
Selectors

Definition (Selectors)

Given an iterator u(x), an m-ary term κ(x1, . . . , xm) is a selector for
u(x) iff there is an m+ 1-ary term ι(x1, . . . , xm, y) yielding the validity
of the formula

z = κ(u∗(x, y))→ y = ι(x, z)

Most likely κ is a projection

Can a cell z be reached in m iterations?

The number ι(x, z) gives “the only possible candidate” y number
of iterations

z = κ(u∗(x, y)) checks if the candidate y is correct

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 11 / 24

The formal framework
Selectors

Definition (Selectors)

Given an iterator u(x), an m-ary term κ(x1, . . . , xm) is a selector for
u(x) iff there is an m+ 1-ary term ι(x1, . . . , xm, y) yielding the validity
of the formula

z = κ(u∗(x, y))→ y = ι(x, z)

Most likely κ is a projection

Can a cell z be reached in m iterations?

The number ι(x, z) gives “the only possible candidate” y number
of iterations

z = κ(u∗(x, y)) checks if the candidate y is correct

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 11 / 24

The formal framework
Example

while (true) { a[i] = 0; i = i+ 2; }

iterator: u(i) := i+ 2 u∗(i, y) = i+ 2y

κ(x) := x

ι(i, z) :=
⌊
z−i
2

⌋
Example

i = 3

a[7] in 3 iterations?

ι(i, z) =
⌊
7−3
2

⌋
= 2 4

u∗(i, 2) = 3 + 2 · 2 = 7 4

i = 3

a[6] in 3 iterations?

ι(i, z) =
⌊
6−3
2

⌋
= 1 4

u∗(i, 1) = 3 + 2 · 1 = 5 8

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 12 / 24

The formal framework
Example

while (true) { a[i] = 0; i = i+ 2; }

iterator: u(i) := i+ 2

u∗(i, y) = i+ 2y

κ(x) := x

ι(i, z) :=
⌊
z−i
2

⌋
Example

i = 3

a[7] in 3 iterations?

ι(i, z) =
⌊
7−3
2

⌋
= 2 4

u∗(i, 2) = 3 + 2 · 2 = 7 4

i = 3

a[6] in 3 iterations?

ι(i, z) =
⌊
6−3
2

⌋
= 1 4

u∗(i, 1) = 3 + 2 · 1 = 5 8

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 12 / 24

The formal framework
Example

while (true) { a[i] = 0; i = i+ 2; }

iterator: u(i) := i+ 2 u∗(i, y) = i+ 2y

κ(x) := x

ι(i, z) :=
⌊
z−i
2

⌋
Example

i = 3

a[7] in 3 iterations?

ι(i, z) =
⌊
7−3
2

⌋
= 2 4

u∗(i, 2) = 3 + 2 · 2 = 7 4

i = 3

a[6] in 3 iterations?

ι(i, z) =
⌊
6−3
2

⌋
= 1 4

u∗(i, 1) = 3 + 2 · 1 = 5 8

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 12 / 24

The formal framework
Example

while (true) { a[i] = 0; i = i+ 2; }

iterator: u(i) := i+ 2 u∗(i, y) = i+ 2y

κ(x) := x

ι(i, z) :=
⌊
z−i
2

⌋
Example

i = 3

a[7] in 3 iterations?

ι(i, z) =
⌊
7−3
2

⌋
= 2 4

u∗(i, 2) = 3 + 2 · 2 = 7 4

i = 3

a[6] in 3 iterations?

ι(i, z) =
⌊
6−3
2

⌋
= 1 4

u∗(i, 1) = 3 + 2 · 1 = 5 8

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 12 / 24

The formal framework
Example

while (true) { a[i] = 0; i = i+ 2; }

iterator: u(i) := i+ 2 u∗(i, y) = i+ 2y

κ(x) := x

ι(i, z) :=
⌊
z−i
2

⌋

Example

i = 3

a[7] in 3 iterations?

ι(i, z) =
⌊
7−3
2

⌋
= 2 4

u∗(i, 2) = 3 + 2 · 2 = 7 4

i = 3

a[6] in 3 iterations?

ι(i, z) =
⌊
6−3
2

⌋
= 1 4

u∗(i, 1) = 3 + 2 · 1 = 5 8

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 12 / 24

The formal framework
Example

while (true) { a[i] = 0; i = i+ 2; }

iterator: u(i) := i+ 2 u∗(i, y) = i+ 2y

κ(x) := x

ι(i, z) :=
⌊
z−i
2

⌋
Example

i = 3

a[7] in 3 iterations?

ι(i, z) =
⌊
7−3
2

⌋
= 2 4

u∗(i, 2) = 3 + 2 · 2 = 7 4

i = 3

a[6] in 3 iterations?

ι(i, z) =
⌊
6−3
2

⌋
= 1 4

u∗(i, 1) = 3 + 2 · 1 = 5 8

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 12 / 24

The formal framework
Example

while (true) { a[i] = 0; i = i+ 2; }

iterator: u(i) := i+ 2 u∗(i, y) = i+ 2y

κ(x) := x

ι(i, z) :=
⌊
z−i
2

⌋
Example

i = 3

a[7] in 3 iterations?

ι(i, z) =
⌊
7−3
2

⌋
= 2 4

u∗(i, 2) = 3 + 2 · 2 = 7 4

i = 3

a[6] in 3 iterations?

ι(i, z) =
⌊
6−3
2

⌋
= 1 4

u∗(i, 1) = 3 + 2 · 1 = 5 8

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 12 / 24

The formal framework
Example

while (true) { a[i] = 0; i = i+ 2; }

iterator: u(i) := i+ 2 u∗(i, y) = i+ 2y

κ(x) := x

ι(i, z) :=
⌊
z−i
2

⌋
Example

i = 3

a[7] in 3 iterations?

ι(i, z) =
⌊
7−3
2

⌋

= 2 4

u∗(i, 2) = 3 + 2 · 2 = 7 4

i = 3

a[6] in 3 iterations?

ι(i, z) =
⌊
6−3
2

⌋
= 1 4

u∗(i, 1) = 3 + 2 · 1 = 5 8

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 12 / 24

The formal framework
Example

while (true) { a[i] = 0; i = i+ 2; }

iterator: u(i) := i+ 2 u∗(i, y) = i+ 2y

κ(x) := x

ι(i, z) :=
⌊
z−i
2

⌋
Example

i = 3

a[7] in 3 iterations?

ι(i, z) =
⌊
7−3
2

⌋
= 2

4

u∗(i, 2) = 3 + 2 · 2 = 7 4

i = 3

a[6] in 3 iterations?

ι(i, z) =
⌊
6−3
2

⌋
= 1 4

u∗(i, 1) = 3 + 2 · 1 = 5 8

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 12 / 24

The formal framework
Example

while (true) { a[i] = 0; i = i+ 2; }

iterator: u(i) := i+ 2 u∗(i, y) = i+ 2y

κ(x) := x

ι(i, z) :=
⌊
z−i
2

⌋
Example

i = 3

a[7] in 3 iterations?

ι(i, z) =
⌊
7−3
2

⌋
= 2 4

u∗(i, 2) = 3 + 2 · 2 = 7 4

i = 3

a[6] in 3 iterations?

ι(i, z) =
⌊
6−3
2

⌋
= 1 4

u∗(i, 1) = 3 + 2 · 1 = 5 8

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 12 / 24

The formal framework
Example

while (true) { a[i] = 0; i = i+ 2; }

iterator: u(i) := i+ 2 u∗(i, y) = i+ 2y

κ(x) := x

ι(i, z) :=
⌊
z−i
2

⌋
Example

i = 3

a[7] in 3 iterations?

ι(i, z) =
⌊
7−3
2

⌋
= 2 4

u∗(i, 2) = 3 + 2 · 2 = 7

4

i = 3

a[6] in 3 iterations?

ι(i, z) =
⌊
6−3
2

⌋
= 1 4

u∗(i, 1) = 3 + 2 · 1 = 5 8

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 12 / 24

The formal framework
Example

while (true) { a[i] = 0; i = i+ 2; }

iterator: u(i) := i+ 2 u∗(i, y) = i+ 2y

κ(x) := x

ι(i, z) :=
⌊
z−i
2

⌋
Example

i = 3

a[7] in 3 iterations?

ι(i, z) =
⌊
7−3
2

⌋
= 2 4

u∗(i, 2) = 3 + 2 · 2 = 7 4

i = 3

a[6] in 3 iterations?

ι(i, z) =
⌊
6−3
2

⌋
= 1 4

u∗(i, 1) = 3 + 2 · 1 = 5 8

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 12 / 24

The formal framework
Example

while (true) { a[i] = 0; i = i+ 2; }

iterator: u(i) := i+ 2 u∗(i, y) = i+ 2y

κ(x) := x

ι(i, z) :=
⌊
z−i
2

⌋
Example

i = 3

a[7] in 3 iterations?

ι(i, z) =
⌊
7−3
2

⌋
= 2 4

u∗(i, 2) = 3 + 2 · 2 = 7 4

i = 3

a[6] in 3 iterations?

ι(i, z) =
⌊
6−3
2

⌋
= 1 4

u∗(i, 1) = 3 + 2 · 1 = 5 8

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 12 / 24

The formal framework
Example

while (true) { a[i] = 0; i = i+ 2; }

iterator: u(i) := i+ 2 u∗(i, y) = i+ 2y

κ(x) := x

ι(i, z) :=
⌊
z−i
2

⌋
Example

i = 3

a[7] in 3 iterations?

ι(i, z) =
⌊
7−3
2

⌋
= 2 4

u∗(i, 2) = 3 + 2 · 2 = 7 4

i = 3

a[6] in 3 iterations?

ι(i, z) =
⌊
6−3
2

⌋
= 1 4

u∗(i, 1) = 3 + 2 · 1 = 5 8

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 12 / 24

The formal framework
Example

while (true) { a[i] = 0; i = i+ 2; }

iterator: u(i) := i+ 2 u∗(i, y) = i+ 2y

κ(x) := x

ι(i, z) :=
⌊
z−i
2

⌋
Example

i = 3

a[7] in 3 iterations?

ι(i, z) =
⌊
7−3
2

⌋
= 2 4

u∗(i, 2) = 3 + 2 · 2 = 7 4

i = 3

a[6] in 3 iterations?

ι(i, z) =
⌊
6−3
2

⌋

= 1 4

u∗(i, 1) = 3 + 2 · 1 = 5 8

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 12 / 24

The formal framework
Example

while (true) { a[i] = 0; i = i+ 2; }

iterator: u(i) := i+ 2 u∗(i, y) = i+ 2y

κ(x) := x

ι(i, z) :=
⌊
z−i
2

⌋
Example

i = 3

a[7] in 3 iterations?

ι(i, z) =
⌊
7−3
2

⌋
= 2 4

u∗(i, 2) = 3 + 2 · 2 = 7 4

i = 3

a[6] in 3 iterations?

ι(i, z) =
⌊
6−3
2

⌋
= 1

4

u∗(i, 1) = 3 + 2 · 1 = 5 8

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 12 / 24

The formal framework
Example

while (true) { a[i] = 0; i = i+ 2; }

iterator: u(i) := i+ 2 u∗(i, y) = i+ 2y

κ(x) := x

ι(i, z) :=
⌊
z−i
2

⌋
Example

i = 3

a[7] in 3 iterations?

ι(i, z) =
⌊
7−3
2

⌋
= 2 4

u∗(i, 2) = 3 + 2 · 2 = 7 4

i = 3

a[6] in 3 iterations?

ι(i, z) =
⌊
6−3
2

⌋
= 1 4

u∗(i, 1) = 3 + 2 · 1 = 5 8

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 12 / 24

The formal framework
Example

while (true) { a[i] = 0; i = i+ 2; }

iterator: u(i) := i+ 2 u∗(i, y) = i+ 2y

κ(x) := x

ι(i, z) :=
⌊
z−i
2

⌋
Example

i = 3

a[7] in 3 iterations?

ι(i, z) =
⌊
7−3
2

⌋
= 2 4

u∗(i, 2) = 3 + 2 · 2 = 7 4

i = 3

a[6] in 3 iterations?

ι(i, z) =
⌊
6−3
2

⌋
= 1 4

u∗(i, 1) = 3 + 2 · 1 = 5

8

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 12 / 24

The formal framework
Example

while (true) { a[i] = 0; i = i+ 2; }

iterator: u(i) := i+ 2 u∗(i, y) = i+ 2y

κ(x) := x

ι(i, z) :=
⌊
z−i
2

⌋
Example

i = 3

a[7] in 3 iterations?

ι(i, z) =
⌊
7−3
2

⌋
= 2 4

u∗(i, 2) = 3 + 2 · 2 = 7 4

i = 3

a[6] in 3 iterations?

ι(i, z) =
⌊
6−3
2

⌋
= 1 4

u∗(i, 1) = 3 + 2 · 1 = 5 8

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 12 / 24

The formal framework
Local ground assignments

Definition (Local ground assignment)

A local ground assignment is a ground assignment of the form

pc = l ∧ φL(a, c) ∧ pc′ = l ∧
a′ = wr(a, κ(c̃), t(a, c)) ∧ c̃′ = u(c̃) ∧ d′ = d

where

(i) c = c̃,d;

(ii) u = u1, . . . , u|c̃| is an iterator;

(iii) the terms κ are a selector assignment for a relative to u;

(iv) the formula φL(a, c) and the terms t(a, c) are purely arithmetical
over the set of terms {c,a(κ(c̃))} ∪ {ai(dj)}1≤i≤s,1≤j≤|d|;

(v) the guard φL contains the conjuncts κi(c̃) 6= dj , for 1 ≤ i ≤ s and
1 ≤ j ≤ |d|.

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 13 / 24

The formal framework
Local ground assignments

Definition (Local ground assignment)

A local ground assignment is a ground assignment of the form

pc = l ∧ φL(a, c) ∧ pc′ = l ∧
a′ = wr(a, κ(c̃), t(a, c)) ∧ c̃′ = u(c̃) ∧ d′ = d

where

(i) c = c̃,d;

(ii) u = u1, . . . , u|c̃| is an iterator;

(iii) the terms κ are a selector assignment for a relative to u;

(iv) the formula φL(a, c) and the terms t(a, c) are purely arithmetical
over the set of terms {c,a(κ(c̃))} ∪ {ai(dj)}1≤i≤s,1≤j≤|d|;

(v) the guard φL contains the conjuncts κi(c̃) 6= dj , for 1 ≤ i ≤ s and
1 ≤ j ≤ |d|.

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 13 / 24

The formal framework
Local ground assignments

Definition (Local ground assignment)

A local ground assignment is a ground assignment of the form

pc = l ∧ φL(a, c) ∧ pc′ = l ∧
a′ = wr(a, κ(c̃), t(a, c)) ∧ c̃′ = u(c̃) ∧ d′ = d

where

(i) c = c̃,d;

(ii) u = u1, . . . , u|c̃| is an iterator;

(iii) the terms κ are a selector assignment for a relative to u;

(iv) the formula φL(a, c) and the terms t(a, c) are purely arithmetical
over the set of terms {c,a(κ(c̃))} ∪ {ai(dj)}1≤i≤s,1≤j≤|d|;

(v) the guard φL contains the conjuncts κi(c̃) 6= dj , for 1 ≤ i ≤ s and
1 ≤ j ≤ |d|.

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 13 / 24

The formal framework
Local ground assignments

Definition (Local ground assignment)

A local ground assignment is a ground assignment of the form

pc = l ∧ φL(a, c) ∧ pc′ = l ∧
a′ = wr(a, κ(c̃), t(a, c)) ∧ c̃′ = u(c̃) ∧ d′ = d

where

(i) c = c̃,d;

(ii) u = u1, . . . , u|c̃| is an iterator;

(iii) the terms κ are a selector assignment for a relative to u;

(iv) the formula φL(a, c) and the terms t(a, c) are purely arithmetical
over the set of terms {c,a(κ(c̃))} ∪ {ai(dj)}1≤i≤s,1≤j≤|d|;

(v) the guard φL contains the conjuncts κi(c̃) 6= dj , for 1 ≤ i ≤ s and
1 ≤ j ≤ |d|.

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 13 / 24

The formal framework
Local ground assignments

Definition (Local ground assignment)

A local ground assignment is a ground assignment of the form

pc = l ∧ φL(a, c) ∧ pc′ = l ∧
a′ = wr(a, κ(c̃), t(a, c)) ∧ c̃′ = u(c̃) ∧ d′ = d

where

(i) c = c̃,d;

(ii) u = u1, . . . , u|c̃| is an iterator;

(iii) the terms κ are a selector assignment for a relative to u;

(iv) the formula φL(a, c) and the terms t(a, c) are purely arithmetical
over the set of terms {c,a(κ(c̃))} ∪ {ai(dj)}1≤i≤s,1≤j≤|d|;

(v) the guard φL contains the conjuncts κi(c̃) 6= dj , for 1 ≤ i ≤ s and
1 ≤ j ≤ |d|.

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 13 / 24

The formal framework
Local ground assignments

Definition (Local ground assignment)

A local ground assignment is a ground assignment of the form

pc = l ∧ φL(a, c) ∧ pc′ = l ∧
a′ = wr(a, κ(c̃), t(a, c)) ∧ c̃′ = u(c̃) ∧ d′ = d

where

(i) c = c̃,d;

(ii) u = u1, . . . , u|c̃| is an iterator;

(iii) the terms κ are a selector assignment for a relative to u;

(iv) the formula φL(a, c) and the terms t(a, c) are purely arithmetical
over the set of terms {c,a(κ(c̃))} ∪ {ai(dj)}1≤i≤s,1≤j≤|d|;

(v) the guard φL contains the conjuncts κi(c̃) 6= dj , for 1 ≤ i ≤ s and
1 ≤ j ≤ |d|.

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 13 / 24

The formal framework
Contribution

Theorem

If τ is a local ground assignment, then τ+ is a Σ0
2-assignment.

Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina.
Tackling divergence: abstraction and acceleration in array
programs.
Technical Report 2012/01, University of Lugano, oct 2012.

The proof of the theorem shows the “template” for τ+

The template is parametric with respect to

iterators
selectors

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 14 / 24

The formal framework
Contribution

Theorem

If τ is a local ground assignment, then τ+ is a Σ0
2-assignment.

Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina.
Tackling divergence: abstraction and acceleration in array
programs.
Technical Report 2012/01, University of Lugano, oct 2012.

The proof of the theorem shows the “template” for τ+

The template is parametric with respect to

iterators
selectors

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 14 / 24

The formal framework
Contribution

Theorem

If τ is a local ground assignment, then τ+ is a Σ0
2-assignment.

Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina.
Tackling divergence: abstraction and acceleration in array
programs.
Technical Report 2012/01, University of Lugano, oct 2012.

The proof of the theorem shows the “template” for τ+

The template is parametric with respect to

iterators
selectors

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 14 / 24

Tool architecture

ST = 〈v, I(v), τ(v,v′)〉

〈I1, I2, . . .〉, 〈S1, S2, . . .〉

Loop
identification

Acceleration
Model

Checker

4

?

8

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 15 / 24

Acceleration for arrays
Practical issue - classification of formulas

Different kind of formulas2 representing the (backward reachable)
state-space:

ground – formulas of the kind φ(v)

Σ0
1 – formulas of the kind ∃i.φ(i,v)

Σ0
2 – formulas of the kind ∃i∀j.φ(i, j,v)

� Σ0
2-formulas might not fall in any known decidable fragment

[BMS06, GdM09]

2In all the formulas we admit the term a(t) only if t is a variable or a constant.
F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 16 / 24

Acceleration for arrays
Practical issue - classification of formulas

Different kind of formulas2 representing the (backward reachable)
state-space:

ground – formulas of the kind φ(v)

Σ0
1 – formulas of the kind ∃i.φ(i,v)

Σ0
2 – formulas of the kind ∃i∀j.φ(i, j,v)

� Σ0
2-formulas might not fall in any known decidable fragment

[BMS06, GdM09]

2In all the formulas we admit the term a(t) only if t is a variable or a constant.
F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 16 / 24

Acceleration for arrays
Practical issue - classification of formulas

Different kind of formulas2 representing the (backward reachable)
state-space:

ground – formulas of the kind φ(v)

Σ0
1 – formulas of the kind ∃i.φ(i,v)

Σ0
2 – formulas of the kind ∃i∀j.φ(i, j,v)

� Σ0
2-formulas might not fall in any known decidable fragment

[BMS06, GdM09]

2In all the formulas we admit the term a(t) only if t is a variable or a constant.
F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 16 / 24

Acceleration for arrays
Practical issue - classification of formulas

Different kind of formulas2 representing the (backward reachable)
state-space:

ground – formulas of the kind φ(v)

Σ0
1 – formulas of the kind ∃i.φ(i,v)

Σ0
2 – formulas of the kind ∃i∀j.φ(i, j,v)

� Σ0
2-formulas might not fall in any known decidable fragment

[BMS06, GdM09]

2In all the formulas we admit the term a(t) only if t is a variable or a constant.
F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 16 / 24

Acceleration for arrays
Practical issue - classification of transitions

Transition formulas can be:

ground assignment – transitions of the kind τ(v,v′)

Σ0
1-assignment – transitions of the kind ∃i.τ(i,v,v′)

Σ0
2-assignment – transitions of the kind ∃i∀j.τ(i, j,v,v′)

Preimages with respect to a Σ0
2-assignment are Σ0

2-formulas

This prevents the practical application of the theoretical result!

Solution: over-approximate problematic Σ0
2-formulas with their

monotonic abstraction [AGP+12]

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 17 / 24

Acceleration for arrays
Practical issue - classification of transitions

Transition formulas can be:

ground assignment – transitions of the kind τ(v,v′)

Σ0
1-assignment – transitions of the kind ∃i.τ(i,v,v′)

Σ0
2-assignment – transitions of the kind ∃i∀j.τ(i, j,v,v′)

Preimages with respect to a Σ0
2-assignment are Σ0

2-formulas

This prevents the practical application of the theoretical result!

Solution: over-approximate problematic Σ0
2-formulas with their

monotonic abstraction [AGP+12]

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 17 / 24

Acceleration for arrays
Practical issue - classification of transitions

Transition formulas can be:

ground assignment – transitions of the kind τ(v,v′)

Σ0
1-assignment – transitions of the kind ∃i.τ(i,v,v′)

Σ0
2-assignment – transitions of the kind ∃i∀j.τ(i, j,v,v′)

Preimages with respect to a Σ0
2-assignment are Σ0

2-formulas

This prevents the practical application of the theoretical result!

Solution: over-approximate problematic Σ0
2-formulas with their

monotonic abstraction [AGP+12]

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 17 / 24

Acceleration for arrays
Practical issue - classification of transitions

Transition formulas can be:

ground assignment – transitions of the kind τ(v,v′)

Σ0
1-assignment – transitions of the kind ∃i.τ(i,v,v′)

Σ0
2-assignment – transitions of the kind ∃i∀j.τ(i, j,v,v′)

Preimages with respect to a Σ0
2-assignment are Σ0

2-formulas

This prevents the practical application of the theoretical result!

Solution: over-approximate problematic Σ0
2-formulas with their

monotonic abstraction [AGP+12]

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 17 / 24

Acceleration for arrays
Example

I l1 P̄
τ0

τ1

τ2

P̄

v1

v2v+2

v3v+3

⊥

⊥

τ2

τ1τ+1

τ0

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 18 / 24

Acceleration for arrays
Example

I l1 P̄
τ0

τ1

τ2

P̄

v1

v2v+2

v3v+3

⊥

⊥

τ2

τ1τ+1

τ0

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 18 / 24

Acceleration for arrays
Example

v1

v+2v
+
2

v2

τ+1 τ1
Instantiate ∀j over ∃i

Might produce spurious counterexamples

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 19 / 24

Acceleration for arrays
Example

v1

v+2v
+
2

v2

τ+1 τ1
Instantiate ∀j over ∃iThis is a

Σ0
2-formula

Might produce spurious counterexamples

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 19 / 24

Acceleration for arrays
Example

v1

v+2v
+
2

v2

τ+1 τ1
Instantiate ∀j over ∃iThis is a

Σ0
2-formula

Might produce spurious counterexamples∃x, y ∀j.

 pc = lL ∧ y > 0 ∧
(i ≤ j < i+ y → j < L ∧ a[j] 6= e) ∧
0 ≤ x < i ∧ a[x] = e ∧ i+ y ≥ L


F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 19 / 24

Acceleration for arrays
Example

v1

v+2v
+
2

v2

τ+1 τ1
Instantiation

pushes it back

to Σ0
1

Instantiate j over {x, y, i, i+ y, . . .}

Might produce spurious counterexamples

∃x, y ∀j.

 pc = lL ∧ y > 0 ∧
(i ≤ j < i+ y → j < L ∧ a[j] 6= e) ∧
0 ≤ x < i ∧ a[x] = e ∧ i+ y ≥ L


F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 19 / 24

Acceleration for arrays
Example

v1

v+2v
+
2v
+
2

v2

τ+1 τ1
Instantiate ∀j over ∃i

Might produce spurious counterexamples

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 19 / 24

Acceleration for arrays
Example

v1

v+2v
+
2v
+
2

v2

τ+1 τ1
Instantiate ∀j over ∃iMore instantiations (more precise)

Might produce spurious counterexamples

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 19 / 24

Acceleration for arrays
Example

v1

v+2v
+
2v
+
2

v2

τ+1 τ1
Instantiate ∀j over ∃iMore instantiations (more precise)

Less instantiations (less precise) Might produce spurious counterexamples

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 19 / 24

Acceleration for arrays
Example

v1

v+2v
+
2v
+
2

v2

τ+1 τ1
Instantiate ∀j over ∃i

Might produce spurious counterexamples

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 19 / 24

Acceleration for arrays
Ad-hoc refinement for monotonic abstraction

¬P

J

K+ K

I

τ+i τi

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 20 / 24

Acceleration for arrays
Ad-hoc refinement for monotonic abstraction

¬P

J

K

τi

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 20 / 24

Acceleration for arrays
Experiments

Implemented in the mcmt model checker

Tested on 55 challenging benchmarks on arrays

initializing
searching
sorting
etc.

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 21 / 24

Acceleration for arrays
Experiments

Implemented in the mcmt model checker

Tested on 55 challenging benchmarks on arrays

initializing
searching
sorting
etc.

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 21 / 24

Acceleration for arrays
Experiments

function allDiff (int a[N]) :

1 r = true;

2 for (i = 1; i < N ∧ r; i++)

3 for (j = i-1; j ≥ 0 ∧ r; j--)

4 if (a[i] = a[j]) r = false;

5 assert (r→ (∀x, y(0 ≤ x < y < N)→ (a[x] 6= a[y])))

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 22 / 24

Acceleration for arrays
Experiments

function allDiff (int a[N]) :

1 r = true;

2 for (i = 1; i < N ∧ r; i++)

3 for (j = i-1; j ≥ 0 ∧ r; j--)

4 if (a[i] = a[j]) r = false;

5 assert (r→ (∀x, y(0 ≤ x < y < N)→ (a[x] 6= a[y])))

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 22 / 24

Acceleration for arrays
Experiments

0.01

0.1

1

10

0.01 0.1 1 10

A
c
c
e
l
e
r
a
t
io
n

Abstraction

mcmt running time

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 23 / 24

Acceleration for arrays
Experiments

0.01

0.1

1

10

0.01 0.1 1 10

A
c
c
e
l
.
+

A
b
st

r
.

Abstraction

mcmt running time

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 23 / 24

Acceleration for arrays
Experiments

0.01

0.1

1

10

0.01 0.1 1 10

A
c
c
e
l
.
+

A
b
st

r
.

Acceleration

mcmt running time

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 23 / 24

Conclusion

Accelerations of local ground assignments are Σ0
2-assignments

Template-based computation of τ+

High degree of automation
Computationally cheap

monotonic abstraction to over-approximate problematic preimages
with respect to accelerated transitions

Experimental evidence that acceleration and abstraction are
mutually beneficial

Thank you! Questions?

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 24 / 24

Conclusion

Accelerations of local ground assignments are Σ0
2-assignments

Template-based computation of τ+

High degree of automation
Computationally cheap

monotonic abstraction to over-approximate problematic preimages
with respect to accelerated transitions

Experimental evidence that acceleration and abstraction are
mutually beneficial

Thank you! Questions?

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 24 / 24

Conclusion

Accelerations of local ground assignments are Σ0
2-assignments

Template-based computation of τ+

High degree of automation
Computationally cheap

monotonic abstraction to over-approximate problematic preimages
with respect to accelerated transitions

Experimental evidence that acceleration and abstraction are
mutually beneficial

Thank you! Questions?

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 24 / 24

Conclusion

Accelerations of local ground assignments are Σ0
2-assignments

Template-based computation of τ+

High degree of automation
Computationally cheap

monotonic abstraction to over-approximate problematic preimages
with respect to accelerated transitions

Experimental evidence that acceleration and abstraction are
mutually beneficial

Thank you! Questions?

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 24 / 24

Conclusion

Accelerations of local ground assignments are Σ0
2-assignments

Template-based computation of τ+

High degree of automation
Computationally cheap

monotonic abstraction to over-approximate problematic preimages
with respect to accelerated transitions

Experimental evidence that acceleration and abstraction are
mutually beneficial

Thank you! Questions?

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 24 / 24

References I

Francesco Alberti, Silvio Ghilardi, Elena Pagani, Silvio Ranise, and
Gian Paolo Rossi.
Universal guards, relativization of quantifiers, and failure models in
Model Checking Modulo Theories.
JSAT, 8(1/2):29–61, 2012.

Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina.
Tackling divergence: abstraction and acceleration in array
programs.
Technical Report 2012/01, University of Lugano, oct 2012.

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 25 / 24

References II

Gerd Behrmann, Johan Bengtsson, Alexandre David, Kim G.
Larsen, Paul Pettersson, and Wang Yi.
UPPAAL implementation secrets.
In Werner Damm and Ernst-Rüdiger Olderog, editors, FTRTFT,
volume 2469 of Lecture Notes in Computer Science, pages 3–22.
Springer, 2002.

Marius Bozga, Radu Iosif, and Filip Konecný.
Fast acceleration of ultimately periodic relations.
In Tayssir Touili, Byron Cook, and Paul Jackson, editors, CAV,
volume 6174 of Lecture Notes in Computer Science, pages 227–242.
Springer, 2010.

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 26 / 24

References III

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma.
What’s decidable about arrays?
In E. Allen Emerson and Kedar S. Namjoshi, editors, VMCAI,
volume 3855 of Lecture Notes in Computer Science, pages 427–442.
Springer, 2006.

Yeting Ge and Leonardo M. de Moura.
Complete instantiation for quantified formulas in satisfiabiliby
modulo theories.
In Ahmed Bouajjani and Oded Maler, editors, CAV, volume 5643
of Lecture Notes in Computer Science, pages 306–320. Springer,
2009.

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 27 / 24

