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Context: Reachability analysis

ST = ( v , I(v) , τ(v,v′) )

Ingredients: transition system ST and a safety property P (v)

Reachability analysis: establish if it is possible to reach ¬P (v)

⇒ T is Presburger arithmetic enriched with free function symbols

satisfiability and validity with respect to structures having the standard
structure of natural numbers as reduct

v contains free unary function symbols (a) and free constants (c)
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Context: Reachability analysis
Backward search

We iteratively compute the preimage of ¬P applying backward τ

¬PI
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Context: Reachability analysis
Backward search

We iteratively compute the preimage of ¬P applying backward τ

... until we find an intersection with the set of initial states...
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Context: Reachability analysis
Backward search

We iteratively compute the preimage of ¬P applying backward τ

... until we find an intersection with the set of initial states...

... or a (global) fix-point.

Rn R2 R1 ¬PI

F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 2 / 24



Context: Reachability analysis
Backward search

Reduce intersection and fix-point test to SMT problems:

Intersection test: is I ∧Rn T -satisfiable?

Rn R2 R1 ¬PI
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Context: Reachability analysis
Backward search

Reduce intersection and fix-point test to SMT problems:

Intersection test: is I ∧Rn T -satisfiable?

Fix-point test: is Rn+1 → Rn T -valid?

...or dually: is Rn+1 ∧ ¬Rn T -unsatisfiable?

Rn R2 R1 ¬PI
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Context: Reachability analysis
Backward search - divergence

Precise reachability analysis (usually) diverges on infinite-state
systems

Common experience with verification of annotated code

⇒ Acceleration can help in limiting divergence!
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Acceleration
Example1

procedure Find( int e ) {
lI i = 0;

lL while ( i < L ∧ a[i] 6= e ) {
i = i + 1;

}
lF assert ( ∀x.(0 ≤ x < i)→ a[x] 6= e );

}

1Assume we exit the loop because we reach the end of the array.
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x i

a · · · e · · ·
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Example1

x

×××· · ·

i

a · · · e · · ·

∃x.0 ≤ x ∧ x < i+ n ∧ a[x] = e ∧ i+ n = L ∧
n−1∧
k=0
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Acceleration
Preventing divergence

Find control-flow graph: I l1 P̄
τ0

τ1

τ2

Precise backward reachability

P̄

v1 ⊥

v2 ⊥

v3 ⊥

τ2

τ0

τ1

τ0

τ1

τ0

τ1

With accelerated transitions

(desired behavior)
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Acceleration
State of the art

Acceleration: Transitive closure τ+ of transitions τ encoding cyclic
actions

Challenges:

� In general transitive closure cannot be expressed in FOL

Only some (important) classes of τ ’s allow the definability of τ+

Polling-based systems [BBD+02]
Imperative programs over integers [BIK10]

What about arrays?
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Acceleration for arrays
Contributions

In theory:

Identification of classes of transitions τ over arrays admitting
definable acceleration

Determine the price to pay for expressing τ+

In practice:

Template-based solution

4 High degree of automation
4 Computationally cheap

Combination with abstraction-based frameworks
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Acceleration for arrays
Example

τ1 := pc = lL ∧ i < L ∧ a[i] 6= e︸ ︷︷ ︸
guard

∧ i′ = i + 1︸ ︷︷ ︸
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⇓
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∧ i′ = i + 1︸ ︷︷ ︸
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⇓

τ+1 := ∃y.

 y > 0 ∧ pc = lL ∧
∀j.( i ≤ j < i + y → j < L ∧ a[j] 6= e )

i′ = i + y
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The formal framework
Iterators

Definition (Iterators)

A tuple of m-ary terms u(x) is said to be an iterator iff there exists an
m-tuple of m+ 1-ary terms u∗(x, y) such that for any natural number
n it happens that the formula

un(x) = u∗(x, n̄)

is valid.

Example
u(x) := x+ 1

u∗(x, y) := x+ y
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The formal framework
Selectors

Definition (Selectors)

Given an iterator u(x), an m-ary term κ(x1, . . . , xm) is a selector for
u(x) iff there is an m+ 1-ary term ι(x1, . . . , xm, y) yielding the validity
of the formula

z = κ(u∗(x, y))→ y = ι(x, z)

Most likely κ is a projection

Can a cell z be reached in m iterations?

The number ι(x, z) gives “the only possible candidate” y number
of iterations

z = κ(u∗(x, y)) checks if the candidate y is correct
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The formal framework
Example

while ( true ) { a[i] = 0; i = i+ 2; }

iterator: u(i) := i+ 2 u∗(i, y) = i+ 2y

κ(x) := x

ι(i, z) :=
⌊
z−i
2

⌋
Example

i = 3

a[7] in 3 iterations?

ι(i, z) =
⌊
7−3
2

⌋
= 2 4

u∗(i, 2) = 3 + 2 · 2 = 7 4

i = 3

a[6] in 3 iterations?

ι(i, z) =
⌊
6−3
2

⌋
= 1 4

u∗(i, 1) = 3 + 2 · 1 = 5 8
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The formal framework
Local ground assignments

Definition (Local ground assignment)

A local ground assignment is a ground assignment of the form

pc = l ∧ φL(a, c) ∧ pc′ = l ∧
a′ = wr(a, κ(c̃), t(a, c)) ∧ c̃′ = u(c̃) ∧ d′ = d

where

(i) c = c̃,d;

(ii) u = u1, . . . , u|c̃| is an iterator;

(iii) the terms κ are a selector assignment for a relative to u;

(iv) the formula φL(a, c) and the terms t(a, c) are purely arithmetical
over the set of terms {c,a(κ(c̃))} ∪ {ai(dj)}1≤i≤s,1≤j≤|d|;

(v) the guard φL contains the conjuncts κi(c̃) 6= dj , for 1 ≤ i ≤ s and
1 ≤ j ≤ |d|.
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The formal framework
Contribution

Theorem

If τ is a local ground assignment, then τ+ is a Σ0
2-assignment.

Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina.
Tackling divergence: abstraction and acceleration in array
programs.
Technical Report 2012/01, University of Lugano, oct 2012.

The proof of the theorem shows the “template” for τ+

The template is parametric with respect to

iterators
selectors
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Tool architecture

ST = 〈v, I(v), τ(v,v′)〉

〈I1, I2, . . .〉, 〈S1, S2, . . .〉

Loop
identification

Acceleration
Model

Checker

4

?

8
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Acceleration for arrays
Practical issue - classification of formulas

Different kind of formulas2 representing the (backward reachable)
state-space:

ground – formulas of the kind φ(v)

Σ0
1 – formulas of the kind ∃i.φ(i,v)

Σ0
2 – formulas of the kind ∃i∀j.φ(i, j,v)

� Σ0
2-formulas might not fall in any known decidable fragment

[BMS06, GdM09]

2In all the formulas we admit the term a(t) only if t is a variable or a constant.
F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 16 / 24



Acceleration for arrays
Practical issue - classification of formulas

Different kind of formulas2 representing the (backward reachable)
state-space:

ground – formulas of the kind φ(v)

Σ0
1 – formulas of the kind ∃i.φ(i,v)

Σ0
2 – formulas of the kind ∃i∀j.φ(i, j,v)

� Σ0
2-formulas might not fall in any known decidable fragment

[BMS06, GdM09]

2In all the formulas we admit the term a(t) only if t is a variable or a constant.
F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 16 / 24



Acceleration for arrays
Practical issue - classification of formulas

Different kind of formulas2 representing the (backward reachable)
state-space:

ground – formulas of the kind φ(v)

Σ0
1 – formulas of the kind ∃i.φ(i,v)

Σ0
2 – formulas of the kind ∃i∀j.φ(i, j,v)

� Σ0
2-formulas might not fall in any known decidable fragment

[BMS06, GdM09]

2In all the formulas we admit the term a(t) only if t is a variable or a constant.
F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 16 / 24



Acceleration for arrays
Practical issue - classification of formulas

Different kind of formulas2 representing the (backward reachable)
state-space:

ground – formulas of the kind φ(v)

Σ0
1 – formulas of the kind ∃i.φ(i,v)

Σ0
2 – formulas of the kind ∃i∀j.φ(i, j,v)

� Σ0
2-formulas might not fall in any known decidable fragment

[BMS06, GdM09]

2In all the formulas we admit the term a(t) only if t is a variable or a constant.
F. Alberti Definability of Accelerated Relations in a Theory of Arrays . . . 16 / 24



Acceleration for arrays
Practical issue - classification of transitions

Transition formulas can be:

ground assignment – transitions of the kind τ(v,v′)

Σ0
1-assignment – transitions of the kind ∃i.τ(i,v,v′)

Σ0
2-assignment – transitions of the kind ∃i∀j.τ(i, j,v,v′)

Preimages with respect to a Σ0
2-assignment are Σ0

2-formulas

This prevents the practical application of the theoretical result!

Solution: over-approximate problematic Σ0
2-formulas with their

monotonic abstraction [AGP+12]
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Acceleration for arrays
Example

I l1 P̄
τ0

τ1

τ2

P̄

v1

v2v+2

v3v+3

⊥

⊥

τ2

τ1τ+1

τ0
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Acceleration for arrays
Example

v1

v+2v
+
2

v2

τ+1 τ1
Instantiate ∀j over ∃i

Might produce spurious counterexamples
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+
2

v2

τ+1 τ1
Instantiate ∀j over ∃iThis is a

Σ0
2-formula

Might produce spurious counterexamples∃x, y ∀j.

 pc = lL ∧ y > 0 ∧
(i ≤ j < i+ y → j < L ∧ a[j] 6= e) ∧
0 ≤ x < i ∧ a[x] = e ∧ i+ y ≥ L
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Example
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+
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v2

τ+1 τ1
Instantiation

pushes it back

to Σ0
1

Instantiate j over {x, y, i, i+ y, . . .}

Might produce spurious counterexamples

∃x, y ∀j.
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Acceleration for arrays
Ad-hoc refinement for monotonic abstraction
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Acceleration for arrays
Experiments

Implemented in the mcmt model checker

Tested on 55 challenging benchmarks on arrays

initializing
searching
sorting
etc.
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Acceleration for arrays
Experiments

function allDiff ( int a[N] ) :

1 r = true;

2 for (i = 1; i < N ∧ r; i++)

3 for (j = i-1; j ≥ 0 ∧ r; j--)

4 if (a[i] = a[j]) r = false;

5 assert (r→ (∀x, y(0 ≤ x < y < N)→ (a[x] 6= a[y])))
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Conclusion

Accelerations of local ground assignments are Σ0
2-assignments

Template-based computation of τ+

High degree of automation
Computationally cheap

monotonic abstraction to over-approximate problematic preimages
with respect to accelerated transitions

Experimental evidence that acceleration and abstraction are
mutually beneficial

Thank you! Questions?
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