Definability of Accelerated Relations in a Theory of Arrays and its Applications

F. Alberti¹, S. Ghilardi², N. Sharygina¹

¹University of Lugano, Switzerland ²University of Milan, Italy

9th International Symposium on Frontiers of Combining Systems September 18, 2013

$$\mathcal{S}_T = (\mathbf{v}, I(\mathbf{v}), \tau(\mathbf{v}, \mathbf{v}'))$$

- **Ingredients**: transition system S_T and a safety property $P(\mathbf{v})$
- **Reachability analysis:** establish if it is possible to reach $\neg P(\mathbf{v})$

$$\mathcal{S}_T = (\mathbf{v}, I(\mathbf{v}), \tau(\mathbf{v}, \mathbf{v}'))$$

- **Ingredients**: transition system S_T and a safety property $P(\mathbf{v})$
- **Reachability analysis**: establish if it is possible to reach $\neg P(\mathbf{v})$
- \Rightarrow T is Presburger arithmetic enriched with free function symbols
 - satisfiability and validity with respect to structures having the standard structure of natural numbers as reduct
 - **v** contains free unary function symbols (a) and free constants (c)

We iteratively compute the preimage of ¬P applying backward τ
... until we find an intersection with the set of initial states...

Context: Reachability analysis Backward search

- \blacksquare We iteratively compute the preimage of $\neg P$ applying backward τ
- ... until we find an intersection with the set of initial states...
- ... or a (global) fix-point.

Context: Reachability analysis Backward search

Reduce intersection and fix-point test to SMT problems:

Intersection test: is $I \wedge R_n$ *T*-satisfiable?

Context: Reachability analysis Backward search

Reduce intersection and fix-point test to SMT problems:

- Intersection test: is $I \wedge R_n$ *T*-satisfiable?
- Fix-point test: is $R_{n+1} \rightarrow R_n$ *T*-valid?
- ... or dually: is $R_{n+1} \wedge \neg R_n$ *T*-unsatisfiable?

Precise reachability analysis (usually) diverges on infinite-state systems

Precise reachability analysis (usually) diverges on infinite-state systems

• Common experience with verification of annotated code

Precise reachability analysis (usually) diverges on infinite-state systems

• Common experience with verification of annotated code

 \Rightarrow Acceleration can help in limiting divergence!

 $\begin{array}{ll} & \operatorname{procedure\ Find(\ int\ e\)\ } \left\{ \begin{array}{ll} l_{I} & \operatorname{i}=0; \\ l_{L} & \operatorname{while\ } (\ \operatorname{i}<\operatorname{L}\wedge\operatorname{a}[\operatorname{i}]\neq\operatorname{e\ })\ \left\{ & \operatorname{i}=\operatorname{i}+1; \\ & & \end{array}\right\} \\ l_{F} & \operatorname{assert\ } (\ \forall x.(0\leq x<\operatorname{i})\rightarrow\operatorname{a}[x]\neq\operatorname{e\ }); \\ & \end{array}\right\}$

¹Assume we exit the loop because we reach the end of the array.

procedure Find(int e) { l_I i = 0; l_L while ($i < L \land a[i] \neq e$) { i = i + 1;} l_F assert ($\forall x.(0 \le x \le i) \rightarrow a[x] \ne e$); } $\tau_1 := pc = l_L \quad \land \quad \underbrace{\mathbf{i} < \mathbf{L} \land \mathbf{a}[\mathbf{i}] \neq \mathbf{e}}_{\mathbf{i}} \quad \land \quad \underbrace{\mathbf{i}' = \mathbf{i} + 1}_{\mathbf{i}}$ update guard

¹Assume we exit the loop because we reach the end of the array.

$$\tau_1 := pc = l_L \quad \land \quad \underbrace{\mathbf{i} < \mathbf{L} \land \mathbf{a}[\mathbf{i}] \neq \mathbf{e}}_{\text{guard}} \quad \land \quad \underbrace{\mathbf{i}' = \mathbf{i} + 1}_{\text{update}}$$

 $^1\mathrm{Assume}$ we exit the loop because we reach the end of the array.

$\exists x.0 \leq x \wedge x < i \wedge a[x] = e \wedge i \geq L$

$$\tau_1 := pc = l_L \quad \land \quad \underbrace{\mathbf{i} < \mathbf{L} \land \mathbf{a}[\mathbf{i}] \neq \mathbf{e}}_{\text{guard}} \quad \land \quad \underbrace{\mathbf{i}' = \mathbf{i} + 1}_{\text{update}}$$

¹Assume we exit the loop because we reach the end of the array.

 $\exists x.0 \leq x \land x < i+1 \land a[x] = e \land i+1 = L \land a[i] \neq e$

$$\tau_1 := pc = l_L \quad \land \quad \underbrace{\mathbf{i} < \mathbf{L} \land \mathbf{a}[\mathbf{i}] \neq \mathbf{e}}_{\text{guard}} \quad \land \quad \underbrace{\mathbf{i}' = \mathbf{i} + 1}_{\text{update}}$$

¹Assume we exit the loop because we reach the end of the array.

 $\exists x.0 \leq x \land x < i + 2 \land a[x] = e \land i + 2 = L \land a[i] \neq e \land a[i+1] \neq e$

$$\tau_1 := pc = l_L \quad \land \quad \underbrace{\mathbf{i} < \mathbf{L} \land \mathbf{a}[\mathbf{i}] \neq \mathbf{e}}_{\text{guard}} \quad \land \quad \underbrace{\mathbf{i}' = \mathbf{i} + 1}_{\text{update}}$$

¹Assume we exit the loop because we reach the end of the array.

 $\exists x.0 \le x \land x < i + 3 \land a[x] = e \land i + 3 = L \land a[i] \neq e \land a[i+1] \neq e \land a[i+2] \neq e$

$$\tau_1 := pc = l_L \quad \land \quad \underbrace{\mathbf{i} < \mathbf{L} \land \mathbf{a}[\mathbf{i}] \neq \mathbf{e}}_{\text{guard}} \quad \land \quad \underbrace{\mathbf{i}' = \mathbf{i} + 1}_{\text{update}}$$

¹Assume we exit the loop because we reach the end of the array.

 $\exists x.0 \le x \land x < i + n \land a[x] = e \land i + n = L \land$ $\bigwedge_{k=0}^{n-1} a[i+k] \neq e$ $\tau_1 := pc = l_L \land \underbrace{i < L \land a[i] \neq e}_{guard} \land \underbrace{i' = i + 1}_{update}$

¹Assume we exit the loop because we reach the end of the array.

Find control-flow graph:

Precise backward reachability

With accelerated transitions

Find control-flow graph:

Precise backward reachability

With accelerated transitions

Find control-flow graph:

Precise backward reachability

With accelerated transitions

Find control-flow graph:

Precise backward reachability

With accelerated transitions

Find control-flow graph:

Precise backward reachability

With accelerated transitions (desired behavior)

Find control-flow graph:

Precise backward reachability

With accelerated transitions

Find control-flow graph:

Precise backward reachability

With accelerated transitions

Find control-flow graph:

Precise backward reachability

With accelerated transitions

Find control-flow graph:

Precise backward reachability

With accelerated transitions (desired behavior)

Find control-flow graph:

Precise backward reachability

With accelerated transitions

Find control-flow graph:

Precise backward reachability

With accelerated transitions (desired behavior)

Find control-flow graph:

Precise backward reachability

With accelerated transitions (desired behavior)

Acceleration: Transitive closure τ^+ of transitions τ encoding cyclic actions

Acceleration: Transitive closure τ^+ of transitions τ encoding cyclic actions

Challenges:

In general transitive closure cannot be expressed in FOL
Acceleration: Transitive closure τ^+ of transitions τ encoding cyclic actions

Challenges:

 \searrow In general transitive closure cannot be expressed in FOL

- Only some (important) classes of τ 's allow the definability of τ^+

- Polling-based systems [BBD⁺02]
- Imperative programs over integers [BIK10]

Acceleration: Transitive closure τ^+ of transitions τ encoding cyclic actions

Challenges:

 \rightarrow In general transitive closure cannot be expressed in FOL

- Only some (important) classes of τ 's allow the definability of τ^+

- Polling-based systems [BBD⁺02]
- Imperative programs over integers [BIK10]

• What about arrays?

 \blacksquare Identification of classes of transitions τ over arrays admitting definable acceleration

- Identification of classes of transitions τ over arrays admitting definable acceleration
- Determine the **price** to pay for expressing τ^+

- Identification of classes of transitions τ over arrays admitting definable acceleration
- Determine the **price** to pay for expressing τ^+

In practice:

- Template-based solution
 - $\checkmark\,$ High degree of automation
 - \checkmark Computationally cheap

- Identification of classes of transitions τ over arrays admitting definable acceleration
- Determine the **price** to pay for expressing τ^+

In practice:

- Template-based solution
 - $\checkmark\,$ High degree of automation
 - \checkmark Computationally cheap
- Combination with abstraction-based frameworks

$$\tau_1 := pc = l_L \quad \land \quad \underbrace{\mathbf{i} < \mathbf{L} \land \mathbf{a}[\mathbf{i}] \neq \mathbf{e}}_{\text{guard}} \quad \land \quad \underbrace{\mathbf{i}' = \mathbf{i} + 1}_{\text{update}}$$

$$\tau_1 := pc = l_L \quad \land \quad \underbrace{\mathbf{i} < \mathbf{L} \land \mathbf{a}[\mathbf{i}] \neq \mathbf{e}}_{\text{guard}} \quad \land \quad \underbrace{\mathbf{i}' = \mathbf{i} + 1}_{\text{update}}$$

∜

$$\tau_1 := pc = l_L \quad \land \quad \underbrace{\mathbf{i} < \mathbf{L} \land \mathbf{a}[\mathbf{i}] \neq \mathbf{e}}_{\text{guard}} \quad \land \quad \underbrace{\mathbf{i}' = \mathbf{i} + 1}_{\text{update}}$$

∜

$$\tau_1^+ := \exists y. \begin{pmatrix} y > 0 \land pc = l_L \land \\ \forall j. (\mathbf{i} \le j < \mathbf{i} + y \quad \rightarrow \quad j < \mathbf{L} \land \mathbf{a}[j] \neq \mathbf{e} \end{pmatrix} \\ \mathbf{i}' = \mathbf{i} + y \end{pmatrix}$$

$$\tau_1 := pc = l_L \quad \land \quad \underbrace{\mathbf{i} < \mathbf{L} \land \mathbf{a}[\mathbf{i}] \neq \mathbf{e}}_{\text{guard}} \quad \land \quad \underbrace{\mathbf{i}' = \mathbf{i} + 1}_{\text{update}}$$

∜

$$\tau_1^+ := \exists y. \begin{pmatrix} y > 0 \land pc = l_L \land \\ \forall j. (i \le j < i + y \rightarrow j < \mathbf{L} \land \mathbf{a}[j] \neq \mathbf{e}) \\ i' = i + y \end{pmatrix}$$

Definition (Iterators)

A tuple of *m*-ary terms $\mathbf{u}(\underline{x})$ is said to be an *iterator* iff there exists an *m*-tuple of m + 1-ary terms $\mathbf{u}^*(\underline{x}, y)$ such that for any natural number *n* it happens that the formula

$$\mathbf{u}^n(\underline{x}) = \mathbf{u}^*(\underline{x}, \bar{n})$$

is valid.

Iterators

Definition (Iterators)

A tuple of *m*-ary terms $\mathbf{u}(\underline{x})$ is said to be an *iterator* iff there exists an *m*-tuple of m + 1-ary terms $\mathbf{u}^*(\underline{x}, y)$ such that for any natural number *n* it happens that the formula

$$\mathbf{u}^n(\underline{x}) = \mathbf{u}^*(\underline{x}, \bar{n})$$

is valid.

Iterators

Example

 $\mathbf{u}(x) := x + 1$

Definition (Iterators)

A tuple of *m*-ary terms $\mathbf{u}(\underline{x})$ is said to be an *iterator* iff there exists an *m*-tuple of m + 1-ary terms $\mathbf{u}^*(\underline{x}, y)$ such that for any natural number *n* it happens that the formula

$$\mathbf{u}^n(\underline{x}) = \mathbf{u}^*(\underline{x}, \bar{n})$$

is valid.

Iterators

Example

 $\mathbf{u}(x) := x + 1$

$$\mathbf{u}^*(x,y) := x + y$$

Definition (Selectors)

Selectors

Given an iterator $\mathbf{u}(\underline{x})$, an *m*-ary term $\kappa(x_1, \ldots, x_m)$ is a *selector* for $\mathbf{u}(\underline{x})$ iff there is an m + 1-ary term $\iota(x_1, \ldots, x_m, y)$ yielding the validity of the formula

$$z = \kappa(\mathbf{u}^*(\underline{x}, y)) \to y = \iota(\underline{x}, z)$$

Selectors

Definition (Selectors)

Given an iterator $\mathbf{u}(\underline{x})$, an *m*-ary term $\kappa(x_1, \ldots, x_m)$ is a *selector* for $\mathbf{u}(\underline{x})$ iff there is an m + 1-ary term $\iota(x_1, \ldots, x_m, y)$ yielding the validity of the formula

$$z = \kappa(\mathbf{u}^*(\underline{x}, y)) \to y = \iota(\underline{x}, z)$$

• Most likely κ is a projection

Definition (Selectors)

Selectors

Given an iterator $\mathbf{u}(\underline{x})$, an *m*-ary term $\kappa(x_1, \ldots, x_m)$ is a *selector* for $\mathbf{u}(\underline{x})$ iff there is an m + 1-ary term $\iota(x_1, \ldots, x_m, y)$ yielding the validity of the formula

$$z = \kappa(\mathbf{u}^*(\underline{x}, y)) \to y = \iota(\underline{x}, z)$$

• Most likely κ is a projection

• Can a cell z be reached in m iterations?

- The number $\iota(\underline{x}, z)$ gives "the only possible candidate" y number of iterations
- $\blacksquare \ z = \kappa(\mathbf{u}^*(\underline{x},y))$ checks if the candidate y is correct

The formal framework Example

while (true) {
$$a[i] = 0; i = i + 2;$$
 }

while (true) {
$$a[i] = 0; i = i + 2;$$
 }

• iterator:
$$u(i) := i + 2$$

while (true) {
$$a[i] = 0; i = i + 2;$$
 }

iterator:
$$u(i) := i + 2$$
 $u^*(i, y) = i + 2y$

while (true) {
$$a[i] = 0; i = i + 2;$$
 }

iterator:
$$u(i) := i + 2$$
 $u^*(i, y) = i + 2y$
 $\kappa(x) := x$

while (true) {
$$a[i] = 0; i = i + 2;$$
 }

■ iterator:
$$u(i) := i + 2$$
 $u^*(i, y) = i + 2y$
■ $\kappa(x) := x$
■ $\iota(i, z) := \lfloor \frac{z-i}{2} \rfloor$

while (true) {
$$a[i] = 0; i = i + 2;$$
 }

• iterator:
$$u(i) := i + 2$$
 $u^*(i, y) = i + 2y$
• $\kappa(x) := x$
• $\iota(i, z) := \lfloor \frac{z-i}{2} \rfloor$

while (true) {
$$a[i] = 0; i = i + 2;$$
 }

■ iterator:
$$u(i) := i + 2$$
 $u^*(i, y) = i + 2y$
■ $\kappa(x) := x$
■ $\iota(i, z) := \lfloor \frac{z-i}{2} \rfloor$

- *i* = 3
- a[7] in 3 iterations?

while (true) {
$$a[i] = 0; i = i + 2;$$
 }

• iterator:
$$u(i) := i + 2$$
 $u^*(i, y) = i + 2y$
• $\kappa(x) := x$
• $\iota(i, z) := \lfloor \frac{z-i}{2} \rfloor$

- *i* = 3
- a[7] in 3 iterations?
- $\bullet \iota(i,z) = \left\lfloor \frac{7-3}{2} \right\rfloor$

while (true) {
$$a[i] = 0; i = i + 2;$$
 }

■ iterator:
$$u(i) := i + 2$$
 $u^*(i, y) = i + 2y$
■ $\kappa(x) := x$
■ $\iota(i, z) := \lfloor \frac{z-i}{2} \rfloor$

- *i* = 3
- a[7] in 3 iterations?

$$\bullet \iota(i,z) = \left\lfloor \frac{7-3}{2} \right\rfloor = 2$$

while (true) {
$$a[i] = 0; i = i + 2;$$
 }

■ iterator:
$$u(i) := i + 2$$
 $u^*(i, y) = i + 2y$
■ $\kappa(x) := x$
■ $\iota(i, z) := \lfloor \frac{z-i}{2} \rfloor$

•
$$a[7]$$
 in 3 iterations?

$$\bullet \iota(i,z) = \left\lfloor \frac{7-3}{2} \right\rfloor = 2 \quad \checkmark$$

while (true) {
$$a[i] = 0; i = i + 2;$$
 }

• iterator:
$$u(i) := i + 2$$
 $u^*(i, y) = i + 2y$
• $\kappa(x) := x$
• $\iota(i, z) := \lfloor \frac{z-i}{2} \rfloor$

Example

- *i* = 3
- a[7] in 3 iterations?

$$\bullet \iota(i,z) = \left\lfloor \frac{7-3}{2} \right\rfloor = 2 \quad \checkmark$$

 $\bullet \ u^*(i,2) = 3 + 2 \cdot 2 = 7$

while (true) {
$$a[i] = 0; i = i + 2;$$
 }

• iterator:
$$u(i) := i + 2$$
 $u^*(i, y) = i + 2y$
• $\kappa(x) := x$
• $\iota(i, z) := \lfloor \frac{z-i}{2} \rfloor$

- *i* = 3
- a[7] in 3 iterations?

$$\bullet \iota(i,z) = \left\lfloor \frac{7-3}{2} \right\rfloor = 2 \quad \checkmark$$

$$\bullet \ u^*(i,2) = 3 + 2 \cdot 2 = 7 \quad \checkmark$$

while (true) {
$$a[i] = 0; i = i + 2;$$
 }

■ iterator:
$$u(i) := i + 2$$
 $u^*(i, y) = i + 2y$
■ $\kappa(x) := x$
■ $\iota(i, z) := \lfloor \frac{z-i}{2} \rfloor$

Example

- *i* = 3
- a[7] in 3 iterations?

$$\bullet \iota(i,z) = \left\lfloor \frac{7-3}{2} \right\rfloor = 2 \quad \checkmark$$

■
$$u^*(i,2) = 3 + 2 \cdot 2 = 7$$

i = 3

while (true) {
$$a[i] = 0; i = i + 2;$$
 }

■ iterator:
$$u(i) := i + 2$$
 $u^*(i, y) = i + 2y$
■ $\kappa(x) := x$
■ $\iota(i, z) := \lfloor \frac{z-i}{2} \rfloor$

Example

- *i* = 3
- a[7] in 3 iterations?

$$\bullet \iota(i,z) = \left\lfloor \frac{7-3}{2} \right\rfloor = 2 \quad \checkmark$$

■
$$u^*(i,2) = 3 + 2 \cdot 2 = 7$$

i = 3 *a*[6] in 3 iterations?

while (true) {
$$a[i] = 0; i = i + 2;$$
 }

■ iterator:
$$u(i) := i + 2$$
 $u^*(i, y) = i + 2y$
■ $\kappa(x) := x$
■ $\iota(i, z) := \lfloor \frac{z-i}{2} \rfloor$

$$i = 3$$

$$a[7] \text{ in 3 iterations?}$$

$$a[6] \text{ in 3 iterations?}$$

$$u(i, z) = \lfloor \frac{7-3}{2} \rfloor = 2 \checkmark$$

$$u^*(i, 2) = 3 + 2 \cdot 2 = 7 \checkmark$$

while (true) {
$$a[i] = 0; i = i + 2;$$
 }

■ iterator:
$$u(i) := i + 2$$
 $u^*(i, y) = i + 2y$
■ $\kappa(x) := x$
■ $\iota(i, z) := \lfloor \frac{z-i}{2} \rfloor$

$$i = 3$$

$$a[7] \text{ in 3 iterations?}$$

$$i(i, z) = \lfloor \frac{7-3}{2} \rfloor = 2 \checkmark$$

$$u^*(i, 2) = 3 + 2 \cdot 2 = 7 \checkmark$$

$$i = 3$$

$$a[6] \text{ in 3 iterations?}$$

$$u(i, z) = \lfloor \frac{6-3}{2} \rfloor = 1$$

while (true) {
$$a[i] = 0; i = i + 2;$$
 }

■ iterator:
$$u(i) := i + 2$$
 $u^*(i, y) = i + 2y$
■ $\kappa(x) := x$
■ $\iota(i, z) := \lfloor \frac{z-i}{2} \rfloor$

$$i = 3$$

$$a[7] \text{ in 3 iterations?}$$

$$i(i, z) = \lfloor \frac{7-3}{2} \rfloor = 2 \checkmark$$

$$u^*(i, 2) = 3 + 2 \cdot 2 = 7 \checkmark$$

$$i = 3$$

$$a[6] \text{ in 3 iterations?}$$

$$\iota(i, z) = \lfloor \frac{6-3}{2} \rfloor = 1 \checkmark$$

while (true) {
$$a[i] = 0; i = i + 2;$$
 }

• iterator:
$$u(i) := i + 2$$
 $u^*(i, y) = i + 2y$
• $\kappa(x) := x$
• $\iota(i, z) := \lfloor \frac{z-i}{2} \rfloor$

$$\begin{array}{l} \mathbf{i} = 3 \\ \mathbf{a} [7] \text{ in 3 iterations?} \\ \mathbf{i} (i, z) = \left\lfloor \frac{7-3}{2} \right\rfloor = 2 \\ \mathbf{v} \\ \mathbf{u}^*(i, 2) = 3 + 2 \cdot 2 = 7 \\ \end{array} \begin{array}{l} \mathbf{i} = 3 \\ \mathbf{a} [6] \text{ in 3 iterations?} \\ \mathbf{a} (i, z) = \left\lfloor \frac{6-3}{2} \right\rfloor = 1 \\ \mathbf{v} \\ \mathbf{u}^*(i, 1) = 3 + 2 \cdot 1 = 5 \\ \end{array}$$

while (true) {
$$a[i] = 0; i = i + 2;$$
 }

• iterator:
$$u(i) := i + 2$$
 $u^*(i, y) = i + 2y$
• $\kappa(x) := x$
• $\iota(i, z) := \lfloor \frac{z-i}{2} \rfloor$

$$i = 3$$

$$a[7] \text{ in 3 iterations?}$$

$$a[6] \text{ in 3 iterations?}$$

$$u(i, z) = \lfloor \frac{7-3}{2} \rfloor = 2 \checkmark$$

$$u^*(i, 2) = 3 + 2 \cdot 2 = 7 \checkmark$$

$$u^*(i, 1) = 3 + 2 \cdot 1 = 5 \checkmark$$

Local ground assignments

Definition (Local ground assignment)

A local ground assignment is a ground assignment of the form

$$pc = l \land \phi_L(\mathbf{a}, \mathbf{c}) \land pc' = l \land$$
$$\mathbf{a}' = wr(\mathbf{a}, \kappa(\tilde{\mathbf{c}}), \mathbf{t}(\mathbf{a}, \mathbf{c})) \land \tilde{\mathbf{c}}' = \mathbf{u}(\tilde{\mathbf{c}}) \land \mathbf{d}' = \mathbf{c}$$
Definition (Local ground assignment)

A local ground assignment is a ground assignment of the form

$$pc = l \land \phi_L(\mathbf{a}, \mathbf{c}) \land pc' = l \land$$
$$\mathbf{a}' = wr(\mathbf{a}, \kappa(\tilde{\mathbf{c}}), \mathbf{t}(\mathbf{a}, \mathbf{c})) \land \tilde{\mathbf{c}}' = \mathbf{u}(\tilde{\mathbf{c}}) \land \mathbf{d}' = \mathbf{d}$$

(i)
$$\mathbf{c} = \tilde{\mathbf{c}}, \mathbf{d}$$

Definition (Local ground assignment)

A local ground assignment is a ground assignment of the form

$$pc = l \land \phi_L(\mathbf{a}, \mathbf{c}) \land pc' = l \land$$
$$\mathbf{a}' = wr(\mathbf{a}, \kappa(\tilde{\mathbf{c}}), \mathbf{t}(\mathbf{a}, \mathbf{c})) \land \tilde{\mathbf{c}}' = \mathbf{u}(\tilde{\mathbf{c}}) \land \mathbf{d}' = \mathbf{d}$$

Definition (Local ground assignment)

A local ground assignment is a ground assignment of the form

$$pc = l \land \phi_L(\mathbf{a}, \mathbf{c}) \land pc' = l \land$$
$$\mathbf{a}' = wr(\mathbf{a}, \kappa(\tilde{\mathbf{c}}), \mathbf{t}(\mathbf{a}, \mathbf{c})) \land \tilde{\mathbf{c}}' = \mathbf{u}(\tilde{\mathbf{c}}) \land \mathbf{d}' = \mathbf{d}$$

- (i) c = č, d;
 (ii) u = u₁,..., u_{|č|} is an iterator;
- (iii) the terms κ are a selector assignment for **a** relative to **u**;

Definition (Local ground assignment)

A local ground assignment is a ground assignment of the form

$$pc = l \land \phi_L(\mathbf{a}, \mathbf{c}) \land pc' = l \land$$
$$\mathbf{a}' = wr(\mathbf{a}, \kappa(\tilde{\mathbf{c}}), \mathbf{t}(\mathbf{a}, \mathbf{c})) \land \tilde{\mathbf{c}}' = \mathbf{u}(\tilde{\mathbf{c}}) \land \mathbf{d}' = \mathbf{d}$$

- (i) $\mathbf{c} = \tilde{\mathbf{c}}, \mathbf{d};$
- (ii) $\mathbf{u} = u_1, \ldots, u_{|\tilde{\mathbf{c}}|}$ is an iterator;
- (iii) the terms κ are a selector assignment for **a** relative to **u**;
- (iv) the formula $\phi_L(\mathbf{a}, \mathbf{c})$ and the terms $\mathbf{t}(\mathbf{a}, \mathbf{c})$ are purely arithmetical over the set of terms $\{\mathbf{c}, \mathbf{a}(\kappa(\tilde{\mathbf{c}}))\} \cup \{a_i(d_j)\}_{1 \le i \le s, 1 \le j \le |\mathbf{d}|};$

Definition (Local ground assignment)

A local ground assignment is a ground assignment of the form

$$pc = l \land \phi_L(\mathbf{a}, \mathbf{c}) \land pc' = l \land$$
$$\mathbf{a}' = wr(\mathbf{a}, \kappa(\tilde{\mathbf{c}}), \mathbf{t}(\mathbf{a}, \mathbf{c})) \land \tilde{\mathbf{c}}' = \mathbf{u}(\tilde{\mathbf{c}}) \land \mathbf{d}' = \mathbf{d}$$

- (i) $\mathbf{c} = \tilde{\mathbf{c}}, \mathbf{d};$
- (ii) $\mathbf{u} = u_1, \ldots, u_{|\tilde{\mathbf{c}}|}$ is an iterator;
- (iii) the terms κ are a selector assignment for **a** relative to **u**;
- (iv) the formula $\phi_L(\mathbf{a}, \mathbf{c})$ and the terms $\mathbf{t}(\mathbf{a}, \mathbf{c})$ are purely arithmetical over the set of terms $\{\mathbf{c}, \mathbf{a}(\kappa(\tilde{\mathbf{c}}))\} \cup \{a_i(d_j)\}_{1 \le i \le s, 1 \le j \le |\mathbf{d}|};$
- (v) the guard ϕ_L contains the conjuncts $\kappa_i(\tilde{\mathbf{c}}) \neq d_j$, for $1 \leq i \leq s$ and $1 \leq j \leq |\mathbf{d}|$.

Theorem

Contribution

If τ is a local ground assignment, then τ^+ is a Σ_2^0 -assignment.

Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina. Tackling divergence: abstraction and acceleration in array programs. Technical Report 2012/01, University of Lugano, oct 2012.

Theorem

Contribution

If τ is a local ground assignment, then τ^+ is a Σ_2^0 -assignment.

Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina. Tackling divergence: abstraction and acceleration in array programs. Technical Report 2012/01, University of Lugano, oct 2012.

The proof of the theorem shows the "template" for τ^+

Theorem

Contribution

If τ is a local ground assignment, then τ^+ is a Σ_2^0 -assignment.

Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina. Tackling divergence: abstraction and acceleration in array programs. Technical Report 2012/01, University of Lugano, oct 2012.

- \blacksquare The proof of the theorem shows the "template" for τ^+
- The template is parametric with respect to
 - iterators
 - \blacksquare selectors

Different kind of formulas² representing the (backward reachable) state-space:

• ground – formulas of the kind $\phi(\mathbf{v})$

²In all the formulas we admit the term a(t) only if t is a variable or a constant. F. Alberti

Different kind of formulas² representing the (backward reachable) state-space:

- ground formulas of the kind $\phi(\mathbf{v})$
- Σ_1^0 formulas of the kind $\exists \underline{i}.\phi(\underline{i},\mathbf{v})$

²In all the formulas we admit the term a(t) only if t is a variable or a constant.

Different kind of formulas² representing the (backward reachable) state-space:

- ground formulas of the kind $\phi(\mathbf{v})$
- Σ_1^0 formulas of the kind $\exists \underline{i}.\phi(\underline{i},\mathbf{v})$
- Σ_2^0 formulas of the kind $\exists \underline{i} \forall \underline{j}. \phi(\underline{i}, \underline{j}, \mathbf{v})$

²In all the formulas we admit the term a(t) only if t is a variable or a constant.

Different kind of formulas² representing the (backward reachable) state-space:

- ground formulas of the kind $\phi(\mathbf{v})$
- Σ_1^0 formulas of the kind $\exists \underline{i}.\phi(\underline{i},\mathbf{v})$
- Σ_2^0 formulas of the kind $\exists \underline{i} \forall \underline{j}. \phi(\underline{i}, \underline{j}, \mathbf{v})$

 Σ_2^0 -formulas might not fall in any known decidable fragment [BMS06, GdM09]

²In all the formulas we admit the term a(t) only if t is a variable or a constant.

- ground assignment transitions of the kind $\tau(\mathbf{v}, \mathbf{v}')$
- Σ_1^0 -assignment transitions of the kind $\exists \underline{i}.\tau(\underline{i},\mathbf{v},\mathbf{v}')$
- Σ_2^0 -assignment transitions of the kind $\exists \underline{i} \forall \underline{j} . \tau(\underline{i}, \underline{j}, \mathbf{v}, \mathbf{v}')$

- ground assignment transitions of the kind $\tau(\mathbf{v}, \mathbf{v}')$
- Σ_1^0 -assignment transitions of the kind $\exists \underline{i}. \tau(\underline{i}, \mathbf{v}, \mathbf{v}')$
- Σ_2^0 -assignment transitions of the kind $\exists \underline{i} \forall \underline{j} . \tau(\underline{i}, \underline{j}, \mathbf{v}, \mathbf{v}')$

Preimages with respect to a Σ_2^0 -assignment are Σ_2^0 -formulas

- ground assignment transitions of the kind $\tau(\mathbf{v}, \mathbf{v}')$
- Σ_1^0 -assignment transitions of the kind $\exists \underline{i}.\tau(\underline{i},\mathbf{v},\mathbf{v}')$
- Σ_2^0 -assignment transitions of the kind $\exists \underline{i} \forall \underline{j} . \tau(\underline{i}, \underline{j}, \mathbf{v}, \mathbf{v}')$

- Preimages with respect to a Σ_2^0 -assignment are Σ_2^0 -formulas
- This prevents the practical application of the theoretical result!

- ground assignment transitions of the kind $\tau(\mathbf{v}, \mathbf{v}')$
- Σ_1^0 -assignment transitions of the kind $\exists \underline{i}. \tau(\underline{i}, \mathbf{v}, \mathbf{v}')$
- Σ_2^0 -assignment transitions of the kind $\exists \underline{i} \forall \underline{j} . \tau(\underline{i}, \underline{j}, \mathbf{v}, \mathbf{v}')$

- Preimages with respect to a Σ_2^0 -assignment are Σ_2^0 -formulas
- This prevents the practical application of the theoretical result!
- Solution: over-approximate problematic Σ₂⁰-formulas with their monotonic abstraction [AGP⁺12]

F. Alberti

Definability of Accelerated Relations in a Theory of Arrays ...

Ad-hoc refinement for monotonic abstraction

Ad-hoc refinement for monotonic abstraction

Experiments

■ Implemented in the MCMT model checker

■ Implemented in the MCMT model checker

- Tested on 55 challenging benchmarks on arrays
 - initializing
 - searching
 - sorting
 - etc.

Experiments

$$\begin{array}{ll} \mbox{function allDiff (int a[N]):} \\ 1 & \mbox{r} = \mbox{true;} \\ 2 & \mbox{for (i = 1; i < N \land r; i++)} \\ 3 & \mbox{for (j = i-1; j \ge 0 \land r; j--)} \\ 4 & \mbox{if (a[i] = a[j]) r = false;} \\ 5 & \mbox{assert (r \rightarrow (\forall x, y(0 \le x < y < N) \rightarrow (a[x] \neq a[y])))} \end{array}$$

Experiments

$$\begin{array}{l} \mbox{function allDiff (int a[N]):} \\ 1 \ \mbox{r} = \mbox{true;} \\ 2 \ \mbox{for (i = 1; i < N \land r; i++)} \\ 3 \ \ \mbox{for (j = i-1; j \ge 0 \land r; j--)} \\ 4 \ \ \ \mbox{if (a[i] = a[j]) } r = \mbox{false;} \\ 5 \ \mbox{assert } (\mathbf{r} \rightarrow (\forall x, y(0 \le x < y < \mathbb{N}) \rightarrow (\mathbf{a}[x] \neq \mathbf{a}[y]))) \end{array}$$

Experiments

MCMT running time

F. Alberti

Definability of Accelerated Relations in a Theory of Arrays ...

23 / 24

Experiments

MCMT running time

F. Alberti

Definability of Accelerated Relations in a Theory of Arrays ...

Experiments

MCMT running time

F. Alberti

Definability of Accelerated Relations in a Theory of Arrays ...
• Accelerations of *local ground assignments* are Σ_2^0 -assignments

- Accelerations of *local ground assignments* are Σ_2^0 -assignments
- Template-based computation of τ^+
 - High degree of automation
 - Computationally cheap

- Accelerations of *local ground assignments* are Σ_2^0 -assignments
- Template-based computation of τ^+
 - High degree of automation
 - Computationally cheap

monotonic abstraction to over-approximate problematic preimages with respect to accelerated transitions

- Accelerations of *local ground assignments* are Σ_2^0 -assignments
- Template-based computation of τ^+
 - High degree of automation
 - Computationally cheap
- monotonic abstraction to over-approximate problematic preimages with respect to accelerated transitions
- Experimental evidence that acceleration and abstraction are mutually beneficial

- Accelerations of *local ground assignments* are Σ_2^0 -assignments
- Template-based computation of τ^+
 - High degree of automation
 - Computationally cheap
- monotonic abstraction to over-approximate problematic preimages with respect to accelerated transitions
- Experimental evidence that acceleration and abstraction are mutually beneficial

Thank you! Questions?

 Francesco Alberti, Silvio Ghilardi, Elena Pagani, Silvio Ranise, and Gian Paolo Rossi.
Universal guards, relativization of quantifiers, and failure models in Model Checking Modulo Theories.
JSAT, 8(1/2):29-61, 2012.

Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina. Tackling divergence: abstraction and acceleration in array programs.

Technical Report 2012/01, University of Lugano, oct 2012.

Gerd Behrmann, Johan Bengtsson, Alexandre David, Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL implementation secrets.

In Werner Damm and Ernst-Rüdiger Olderog, editors, *FTRTFT*, volume 2469 of *Lecture Notes in Computer Science*, pages 3–22. Springer, 2002.

Marius Bozga, Radu Iosif, and Filip Konecný.
Fast acceleration of ultimately periodic relations.
In Tayssir Touili, Byron Cook, and Paul Jackson, editors, CAV, volume 6174 of Lecture Notes in Computer Science, pages 227–242.
Springer, 2010.

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What's decidable about arrays?

In E. Allen Emerson and Kedar S. Namjoshi, editors, *VMCAI*, volume 3855 of *Lecture Notes in Computer Science*, pages 427–442. Springer, 2006.

Yeting Ge and Leonardo M. de Moura.

Complete instantiation for quantified formulas in satisfiabiliby modulo theories.

In Ahmed Bouajjani and Oded Maler, editors, *CAV*, volume 5643 of *Lecture Notes in Computer Science*, pages 306–320. Springer, 2009.