
Acceleration-based Safety Decision Procedure for
Programs with Arrays

F. Alberti1, S. Ghilardi2, N. Sharygina1

1University of Lugano, Switzerland
2 University of Milan, Italy

LPAR-19

December 15, 2013

Talk based on results previously published at FroCoS 2013.

Context: decide the safety of programs with arrays

procedure Find(a[L] , e) {
lI i = 0;

lL while (i < L ∧ a[i] 6= e) {
i = i + 1;

}
lF assert (∀x.(0 ≤ x < i)→ a[x] 6= e);

}

Is this program safe?

Can we decide its safety automatically?

F. Alberti Acceleration-based Safety Decision Procedure . . . 1 / 8

Context: decide the safety of programs with arrays

procedure Find(a[L] , e) {
lI i = 0;

lL while (i < L ∧ a[i] 6= e) {
i = i + 1;

}
lF assert (∀x.(0 ≤ x < i)→ a[x] 6= e);

}

Is this program safe?

Can we decide its safety automatically?

F. Alberti Acceleration-based Safety Decision Procedure . . . 1 / 8

Context: decide the safety of programs with arrays

procedure Find(a[L] , e) {
lI i = 0;

lL while (i < L ∧ a[i] 6= e) {
i = i + 1;

}
lF assert (∀x.(0 ≤ x < i)→ a[x] 6= e);

}

Is this program safe?

Can we decide its safety automatically?

F. Alberti Acceleration-based Safety Decision Procedure . . . 1 / 8

Our solution

Problem:

Infinitely many paths to analyze because of loops bounded by
symbolic constants (e.g., L, the length of the array)

Idea:

lI

lL

lE

τ0

τ1

τ2

Acceleration

lI

lL

lL

lE

τ0

τ+1

τ2

τ2

Decision
Procedure

4

8

F. Alberti Acceleration-based Safety Decision Procedure . . . 2 / 8

Our solution

Problem:

Infinitely many paths to analyze because of loops bounded by
symbolic constants (e.g., L, the length of the array)

Idea:

lI

lL

lE

τ0

τ1

τ2

Acceleration

lI

lL

lL

lE

τ0

τ+1

τ2

τ2

Decision
Procedure

4

8

F. Alberti Acceleration-based Safety Decision Procedure . . . 2 / 8

Formal framework

ST = (v , I(v) , τ(v,v′))

T is Presburger arithmetic enriched with free function symbols

satisfiability and validity with respect to structures having the
standard structure of natural numbers as reduct
v contains free unary function symbols (a) and free constants (c)

Classification of formulæ1:

ground – formulas of the kind φ(v)

Σ0
1 – formulas of the kind ∃i.φ(i,v)

Σ0
2 – formulas of the kind ∃i∀j.φ(i, j,v)

1In all the formulæ we admit the term a(t) only if t is a variable or a constant.
F. Alberti Acceleration-based Safety Decision Procedure . . . 3 / 8

Formal framework

ST = (v , I(v) , τ(v,v′))

T is Presburger arithmetic enriched with free function symbols

satisfiability and validity with respect to structures having the
standard structure of natural numbers as reduct
v contains free unary function symbols (a) and free constants (c)

Classification of formulæ1:

ground – formulas of the kind φ(v)

Σ0
1 – formulas of the kind ∃i.φ(i,v)

Σ0
2 – formulas of the kind ∃i∀j.φ(i, j,v)

1In all the formulæ we admit the term a(t) only if t is a variable or a constant.
F. Alberti Acceleration-based Safety Decision Procedure . . . 3 / 8

Formal framework

ST = (v , I(v) , τ(v,v′))

T is Presburger arithmetic enriched with free function symbols

satisfiability and validity with respect to structures having the
standard structure of natural numbers as reduct
v contains free unary function symbols (a) and free constants (c)

Classification of formulæ1:

ground – formulas of the kind φ(v)

Σ0
1 – formulas of the kind ∃i.φ(i,v)

Σ0
2 – formulas of the kind ∃i∀j.φ(i, j,v)

1In all the formulæ we admit the term a(t) only if t is a variable or a constant.
F. Alberti Acceleration-based Safety Decision Procedure . . . 3 / 8

Formal framework

ST = (v , I(v) , τ(v,v′))

T is Presburger arithmetic enriched with free function symbols

satisfiability and validity with respect to structures having the
standard structure of natural numbers as reduct
v contains free unary function symbols (a) and free constants (c)

Classification of formulæ1:

ground – formulas of the kind φ(v)

Σ0
1 – formulas of the kind ∃i.φ(i,v)

Σ0
2 – formulas of the kind ∃i∀j.φ(i, j,v)

1In all the formulæ we admit the term a(t) only if t is a variable or a constant.
F. Alberti Acceleration-based Safety Decision Procedure . . . 3 / 8

Formal framework

ST = (v , I(v) , τ(v,v′))

T is Presburger arithmetic enriched with free function symbols

satisfiability and validity with respect to structures having the
standard structure of natural numbers as reduct
v contains free unary function symbols (a) and free constants (c)

Classification of formulæ1:

ground – formulas of the kind φ(v)

Σ0
1 – formulas of the kind ∃i.φ(i,v)

Σ0
2 – formulas of the kind ∃i∀j.φ(i, j,v)

1In all the formulæ we admit the term a(t) only if t is a variable or a constant.
F. Alberti Acceleration-based Safety Decision Procedure . . . 3 / 8

Acceleration
State of the art

Acceleration: Transitive closure τ+ of transitions τ encoding cyclic
actions

Challenges:

� In general transitive closure cannot be expressed in FOL

Only some (important) classes of τ ’s allow the definability of τ+

Polling-based systems [BBD+02]
Imperative programs over integers [BIK10]

What about arrays?

Acceleration of local ground assignment [AGS13] can be expressed
in the theory T as Σ0

2-assignments

F. Alberti Acceleration-based Safety Decision Procedure . . . 4 / 8

Acceleration
State of the art

Acceleration: Transitive closure τ+ of transitions τ encoding cyclic
actions

Challenges:

� In general transitive closure cannot be expressed in FOL

Only some (important) classes of τ ’s allow the definability of τ+

Polling-based systems [BBD+02]
Imperative programs over integers [BIK10]

What about arrays?

Acceleration of local ground assignment [AGS13] can be expressed
in the theory T as Σ0

2-assignments

F. Alberti Acceleration-based Safety Decision Procedure . . . 4 / 8

Acceleration
State of the art

Acceleration: Transitive closure τ+ of transitions τ encoding cyclic
actions

Challenges:

� In general transitive closure cannot be expressed in FOL

Only some (important) classes of τ ’s allow the definability of τ+

Polling-based systems [BBD+02]
Imperative programs over integers [BIK10]

What about arrays?

Acceleration of local ground assignment [AGS13] can be expressed
in the theory T as Σ0

2-assignments

F. Alberti Acceleration-based Safety Decision Procedure . . . 4 / 8

Acceleration
State of the art

Acceleration: Transitive closure τ+ of transitions τ encoding cyclic
actions

Challenges:

� In general transitive closure cannot be expressed in FOL

Only some (important) classes of τ ’s allow the definability of τ+

Polling-based systems [BBD+02]
Imperative programs over integers [BIK10]

What about arrays?

Acceleration of local ground assignment [AGS13] can be expressed
in the theory T as Σ0

2-assignments

F. Alberti Acceleration-based Safety Decision Procedure . . . 4 / 8

Acceleration for arrays
Example

τ1 := pc = lL ∧ i < L ∧ a[i] 6= e︸ ︷︷ ︸
guard

∧ i′ = i + 1︸ ︷︷ ︸
update

⇓
Number of iterations The guard is satisfied for all iterations

Do the “jump”

F. Alberti Acceleration-based Safety Decision Procedure . . . 5 / 8

Acceleration for arrays
Example

τ1 := pc = lL ∧ i < L ∧ a[i] 6= e︸ ︷︷ ︸
guard

∧ i′ = i + 1︸ ︷︷ ︸
update

⇓

Number of iterations The guard is satisfied for all iterations

Do the “jump”

F. Alberti Acceleration-based Safety Decision Procedure . . . 5 / 8

Acceleration for arrays
Example

τ1 := pc = lL ∧ i < L ∧ a[i] 6= e︸ ︷︷ ︸
guard

∧ i′ = i + 1︸ ︷︷ ︸
update

⇓

τ+1 := ∃y.

 y > 0 ∧ pc = lL ∧
∀j.(i ≤ j < i + y → j < L ∧ a[j] 6= e) ∧
i′ = i + y



Number of iterations The guard is satisfied for all iterations

Do the “jump”

F. Alberti Acceleration-based Safety Decision Procedure . . . 5 / 8

Acceleration for arrays
Example

τ1 := pc = lL ∧ i < L ∧ a[i] 6= e︸ ︷︷ ︸
guard

∧ i′ = i + 1︸ ︷︷ ︸
update

⇓

τ+1 := ∃y.

 y > 0 ∧ pc = lL ∧
∀j.(i ≤ j < i + y → j < L ∧ a[j] 6= e) ∧
i′ = i + y



Number of iterations The guard is satisfied for all iterations

Do the “jump”

F. Alberti Acceleration-based Safety Decision Procedure . . . 5 / 8

Acceleration for arrays
Example

τ1 := pc = lL ∧ i < L ∧ a[i] 6= e︸ ︷︷ ︸
guard

∧ i′ = i + 1︸ ︷︷ ︸
update

⇓

τ+1 := ∃y.

 y > 0 ∧ pc = lL ∧
∀j.(i ≤ j < i + y → j < L ∧ a[j] 6= e) ∧
i′ = i + y


Number of iterations

The guard is satisfied for all iterations

Do the “jump”

F. Alberti Acceleration-based Safety Decision Procedure . . . 5 / 8

Acceleration for arrays
Example

τ1 := pc = lL ∧ i < L ∧ a[i] 6= e︸ ︷︷ ︸
guard

∧ i′ = i + 1︸ ︷︷ ︸
update

⇓

τ+1 := ∃y.

 y > 0 ∧ pc = lL ∧
∀j.(i ≤ j < i + y → j < L ∧ a[j] 6= e) ∧
i′ = i + y


Number of iterations The guard is satisfied for all iterations

Do the “jump”

F. Alberti Acceleration-based Safety Decision Procedure . . . 5 / 8

Acceleration for arrays
Example

τ1 := pc = lL ∧ i < L ∧ a[i] 6= e︸ ︷︷ ︸
guard

∧ i′ = i + 1︸ ︷︷ ︸
update

⇓

τ+1 := ∃y.

 y > 0 ∧ pc = lL ∧
∀j.(i ≤ j < i + y → j < L ∧ a[j] 6= e) ∧
i′ = i + y


Number of iterations The guard is satisfied for all iterations

Do the “jump”

F. Alberti Acceleration-based Safety Decision Procedure . . . 5 / 8

Contribution

8 Σ0
2-formulæ over T may not admit decision procedures

I. Notion of basic-assignments

Subclass of local ground assignments [AGS13]
4 Acceleration of basic assignments is an Array Property formula

[BMS06]

II. Notion of basic-flat-programs

flat control flow graph
every non-loop edge is labeled with a ground or Σ0

1-assignment
every loop edge is labeled with a basic-assignment.

III. The reachability problem for basic-flat-programs is decidable

1. Accelerate all the loops (basic-assignments)
2. Consider all (finitely many) paths from linit to lerror

⇒ Feasible iff the corresponding Array Property formula is satisfiable

F. Alberti Acceleration-based Safety Decision Procedure . . . 6 / 8

Contribution

8 Σ0
2-formulæ over T may not admit decision procedures

I. Notion of basic-assignments

Subclass of local ground assignments [AGS13]
4 Acceleration of basic assignments is an Array Property formula

[BMS06]

II. Notion of basic-flat-programs

flat control flow graph
every non-loop edge is labeled with a ground or Σ0

1-assignment
every loop edge is labeled with a basic-assignment.

III. The reachability problem for basic-flat-programs is decidable

1. Accelerate all the loops (basic-assignments)
2. Consider all (finitely many) paths from linit to lerror

⇒ Feasible iff the corresponding Array Property formula is satisfiable

F. Alberti Acceleration-based Safety Decision Procedure . . . 6 / 8

Contribution

8 Σ0
2-formulæ over T may not admit decision procedures

I. Notion of basic-assignments

Subclass of local ground assignments [AGS13]
4 Acceleration of basic assignments is an Array Property formula

[BMS06]

II. Notion of basic-flat-programs

flat control flow graph
every non-loop edge is labeled with a ground or Σ0

1-assignment
every loop edge is labeled with a basic-assignment.

III. The reachability problem for basic-flat-programs is decidable

1. Accelerate all the loops (basic-assignments)
2. Consider all (finitely many) paths from linit to lerror

⇒ Feasible iff the corresponding Array Property formula is satisfiable

F. Alberti Acceleration-based Safety Decision Procedure . . . 6 / 8

Contribution

8 Σ0
2-formulæ over T may not admit decision procedures

I. Notion of basic-assignments

Subclass of local ground assignments [AGS13]
4 Acceleration of basic assignments is an Array Property formula

[BMS06]

II. Notion of basic-flat-programs

flat control flow graph
every non-loop edge is labeled with a ground or Σ0

1-assignment
every loop edge is labeled with a basic-assignment.

III. The reachability problem for basic-flat-programs is decidable

1. Accelerate all the loops (basic-assignments)
2. Consider all (finitely many) paths from linit to lerror

⇒ Feasible iff the corresponding Array Property formula is satisfiable

F. Alberti Acceleration-based Safety Decision Procedure . . . 6 / 8

Basic-Flat-Programs

Procedures handling arrays of unknown length like:

Initialization of the array to a given value

Searching in an array for a given value

Swapping two different arrays

Testing if two arrays are equal

F. Alberti Acceleration-based Safety Decision Procedure . . . 7 / 8

Conclusion

1. Acceleration to reduce the number of possible error paths of a
basic-flat-program from infinite to finite

2. Accelerations of basic-assignments are Σ0
2-assignments belonging

to the Array Property fragment [BMS06]

⇒ The combination of the two above results allows to establish a full
decidability result for basic-flat-program with arrays.

Future work: new decidability results for array programs based on

New decidable (quantified) fragments of array theories

New acceleration schemata for assignments modeling pieces of code

Thank you! Questions?

F. Alberti Acceleration-based Safety Decision Procedure . . . 8 / 8

Conclusion

1. Acceleration to reduce the number of possible error paths of a
basic-flat-program from infinite to finite

2. Accelerations of basic-assignments are Σ0
2-assignments belonging

to the Array Property fragment [BMS06]

⇒ The combination of the two above results allows to establish a full
decidability result for basic-flat-program with arrays.

Future work: new decidability results for array programs based on

New decidable (quantified) fragments of array theories

New acceleration schemata for assignments modeling pieces of code

Thank you! Questions?

F. Alberti Acceleration-based Safety Decision Procedure . . . 8 / 8

Conclusion

1. Acceleration to reduce the number of possible error paths of a
basic-flat-program from infinite to finite

2. Accelerations of basic-assignments are Σ0
2-assignments belonging

to the Array Property fragment [BMS06]

⇒ The combination of the two above results allows to establish a full
decidability result for basic-flat-program with arrays.

Future work: new decidability results for array programs based on

New decidable (quantified) fragments of array theories

New acceleration schemata for assignments modeling pieces of code

Thank you! Questions?

F. Alberti Acceleration-based Safety Decision Procedure . . . 8 / 8

Conclusion

1. Acceleration to reduce the number of possible error paths of a
basic-flat-program from infinite to finite

2. Accelerations of basic-assignments are Σ0
2-assignments belonging

to the Array Property fragment [BMS06]

⇒ The combination of the two above results allows to establish a full
decidability result for basic-flat-program with arrays.

Future work: new decidability results for array programs based on

New decidable (quantified) fragments of array theories

New acceleration schemata for assignments modeling pieces of code

Thank you! Questions?

F. Alberti Acceleration-based Safety Decision Procedure . . . 8 / 8

Conclusion

1. Acceleration to reduce the number of possible error paths of a
basic-flat-program from infinite to finite

2. Accelerations of basic-assignments are Σ0
2-assignments belonging

to the Array Property fragment [BMS06]

⇒ The combination of the two above results allows to establish a full
decidability result for basic-flat-program with arrays.

Future work: new decidability results for array programs based on

New decidable (quantified) fragments of array theories

New acceleration schemata for assignments modeling pieces of code

Thank you! Questions?

F. Alberti Acceleration-based Safety Decision Procedure . . . 8 / 8

References I

Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina.
Definability of accelerated relations in a theory of arrays and its
applications.
In FroCos, pages 23–39, 2013.

Gerd Behrmann, Johan Bengtsson, Alexandre David, Kim G.
Larsen, Paul Pettersson, and Wang Yi.
UPPAAL implementation secrets.
In Werner Damm and Ernst-Rüdiger Olderog, editors, FTRTFT,
volume 2469 of Lecture Notes in Computer Science, pages 3–22.
Springer, 2002.

F. Alberti Acceleration-based Safety Decision Procedure . . . 9 / 8

References II

Marius Bozga, Radu Iosif, and Filip Konecný.
Fast acceleration of ultimately periodic relations.
In Tayssir Touili, Byron Cook, and Paul Jackson, editors, CAV,
volume 6174 of Lecture Notes in Computer Science, pages 227–242.
Springer, 2010.

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma.
What’s decidable about arrays?
In E. Allen Emerson and Kedar S. Namjoshi, editors, VMCAI,
volume 3855 of Lecture Notes in Computer Science, pages 427–442.
Springer, 2006.

F. Alberti Acceleration-based Safety Decision Procedure . . . 10 / 8

