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Context: decide the safety of programs with arrays

procedure Find( a[L] , e ) {
lI i = 0;

lL while ( i < L ∧ a[i] 6= e ) {
i = i + 1;

}
lF assert ( ∀x.(0 ≤ x < i)→ a[x] 6= e );

}

Is this program safe?

Can we decide its safety automatically?
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Our solution

Problem:

Infinitely many paths to analyze because of loops bounded by
symbolic constants (e.g., L, the length of the array)

Idea:
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Formal framework

ST = ( v , I(v) , τ(v,v′) )

T is Presburger arithmetic enriched with free function symbols

satisfiability and validity with respect to structures having the
standard structure of natural numbers as reduct
v contains free unary function symbols (a) and free constants (c)

Classification of formulæ1:

ground – formulas of the kind φ(v)

Σ0
1 – formulas of the kind ∃i.φ(i,v)

Σ0
2 – formulas of the kind ∃i∀j.φ(i, j,v)

1In all the formulæ we admit the term a(t) only if t is a variable or a constant.
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Acceleration
State of the art

Acceleration: Transitive closure τ+ of transitions τ encoding cyclic
actions

Challenges:

� In general transitive closure cannot be expressed in FOL

Only some (important) classes of τ ’s allow the definability of τ+

Polling-based systems [BBD+02]
Imperative programs over integers [BIK10]

What about arrays?

Acceleration of local ground assignment [AGS13] can be expressed
in the theory T as Σ0

2-assignments
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Acceleration for arrays
Example

τ1 := pc = lL ∧ i < L ∧ a[i] 6= e︸ ︷︷ ︸
guard

∧ i′ = i + 1︸ ︷︷ ︸
update

⇓
Number of iterations The guard is satisfied for all iterations

Do the “jump”
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Contribution

8 Σ0
2-formulæ over T may not admit decision procedures

I. Notion of basic-assignments

Subclass of local ground assignments [AGS13]
4 Acceleration of basic assignments is an Array Property formula

[BMS06]

II. Notion of basic-flat-programs

flat control flow graph
every non-loop edge is labeled with a ground or Σ0

1-assignment
every loop edge is labeled with a basic-assignment.

III. The reachability problem for basic-flat-programs is decidable

1. Accelerate all the loops (basic-assignments)
2. Consider all (finitely many) paths from linit to lerror

⇒ Feasible iff the corresponding Array Property formula is satisfiable
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Basic-Flat-Programs

Procedures handling arrays of unknown length like:

Initialization of the array to a given value

Searching in an array for a given value

Swapping two different arrays

Testing if two arrays are equal
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Conclusion

1. Acceleration to reduce the number of possible error paths of a
basic-flat-program from infinite to finite

2. Accelerations of basic-assignments are Σ0
2-assignments belonging

to the Array Property fragment [BMS06]

⇒ The combination of the two above results allows to establish a full
decidability result for basic-flat-program with arrays.

Future work: new decidability results for array programs based on

New decidable (quantified) fragments of array theories

New acceleration schemata for assignments modeling pieces of code

Thank you! Questions?
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