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t: quantified fragments of array theories

Many applications:

m Properties of the heap
m Frame axioms
m Checking user provided assertions

m Parameterized systems

= Verifying array programs:
m CEGAR-based approaches for array programs [AlbertiBGT12]
m Accelerations of relations over arrays [AlbertiGS13]
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Accelerations of relations over arrays
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Accelerations of relations over arrays
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v’ Accelerations of a class of relation over arrays is definable via
F*v*-formulee [AlbertiGS13]
Accelerations might be outside known decidable fragments
[BradleyMS06, HabermehlIV08, GeM09].
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Accelerations of relations over arrays

T:=G@,ali]) A i'=i+k A a' =store(a,i,t(ali]))

Vi[i<j<i+k-ynDp(j—1i) — G(ja())] A
=3y >0 i =i+k-yA
vi.[a'(j) =U(4,4,y,a(j) ) ]
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Quantified fragments of array theories

Related work

Theory of arrays: “base” theory T + free functions a

Fragment of interest: ¢ :=3JcViy(c, i, a(t))
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Quantified fragments of array theories

Related work

Theory of arrays: “base” theory T + free functions a
Fragment of interest: ¢ :=3JcViy(c, i, a(t))

m In general, undecidable

m If constrained, two main strategies to show decidability:

Instantiation-based

Automata-based
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Quantified fragments of array theories

Related work

Bradley et al. “What’s decidable about arrays?”, VMCAI 2006.

m Array property: ¢ = Vi.F(i) — G( a(i) )
m F(i) is a conjunction of atoms of the kind ¢ < j ,i <t ,t <4

I. Identify an index set T
II. Instantiate i over Z to obtain a quantifier-free 1 A - A,

ITI. Standard theory-combination approaches on ¥ A --- A ¢,

m Complexity: NEXPTIME (NP if we fix the number of index
variables)
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Quantified fragments of array theories

Related work

Habermehl et al. “A Logic of Singly Indexed Arrays”, LPAR 2008.

o = Vi.F(i) = G(i,a(i + k))
m No disjunctions in G -
m Atoms are difference logic constraints (with equations modulo k)

I. Translate ¢ into a FCADBM! A,
IT. Check the emptiness of £(Ay)

m Complexity: unknown

!Deterministic flat counter automata with difference bound transition rules
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Quantified fragments of array theories

Our contribution wrt related work
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Quantified fragments of array theories

Our contribution wrt related work

Presburger + exp

Real Arithmetic

e N
Flat Array Properties
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Our contribution

Flat Array Properties

B = JcViy(i, a(i), c, a(c))

m a(t) allowed only if ¢ is a variable
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Our contribution
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B = JcViy(i, a(i), c, a(c))

m a(t) allowed only if ¢ is a variable

m Mono-sorted theory: T'U{a1,...,a,}
mij=1
m Requirement: T-decidability of 3*V3*-formulse
m Complexity: quadratic instance of a 3*V3* T-satisfiability problem
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Our contribution

Flat Array Properties

B = JcViy(i, a(i), c, a(c))

m a(t) allowed only if ¢ is a variable

m Mono-sorted theory: T'U{a1,...,a,}
mij=1
m Requirement: T-decidability of 3*V3*-formulee
m Complexity: quadratic instance of a 3*V3* T-satisfiability problem

m Multi-sorted theory: Tr UTg U {a1,...,an}
m INDEX atoms with at most one universally quantified variable
m Requirement: T7-decidability of 3*V-formulee
m Requirement: Tp-decidability of quantifier-free formulae
m Complexity if T7,Tg are PT: NEXPTIME-complete
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Decision Procedure for the multi-sorted case

F:=3c Vi .¢(1i,a(i),c,a(c))

MEF
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Decision Pr ure for the multi-sorted case

F:=3c Vi .¢(1i,a(i),c,a(c))

MEF

INDEXM a™ is a total function from INDEX™ to ELEM™M
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Decision Procedure for the multi-sorted case

F:=3c Vi .¢(1i,a(i),c,a(c))

STEP I. Guess the set of INDEX types‘

ELEMM

INDEXM
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Decision Procedure for the multi-sorted case

F:=3c Vi .¢(1i,a(i),c,a(c))

‘STEP I. Guess the set of INDEX types‘

m Consider the set K of all INDEX atoms in F' (plus equalities with
the ¢ constants)

m Let {M;,..., M,} be the the set of mazimal and consistent sets of
literals built out of K

m Each L(z,c) in every M), is an atom of K or its negation
m All the M}’s are mutually exclusive

m Every element of INDEXM has to realize a type Mj:

MiEve [\ A L)

7j=1 LGM]'
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Decision Procedure for the multi-sorted case

F:=3c Vi .¢(1i,a(i),c,a(c))

STEP II. For each type M, take a by, € INDEXM realizing it

ELEMM
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Decision Procedure for the multi-sorted case

F:=3c Vi .¢(1i,a(i),c,a(c))

STEP II. For each type M), take a b, € INDEXM realizing it

1. Each by realizes the corresponding type
Mr = /\ /\ (bj,c)
j=1LeM;

2. The instantiation

/\ Y(io,a(io), c,a(c) )

o:i—b

is consistent
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Decision Procedure for ARR*(T7, Tg)

F:=3c Vi .¢(1i,a(i),c,a(c))

Jj=1LeM;
q
7j=1 LEM]‘

F. Alberti Decision Procedures for Flat Array Properties



Decision Pr ure for the multi-sorted case

‘ STEP III. Substitute the tuple a(b) * a(c) with a tuple e of ELEM constants

ELEMM
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Decision Pr ure for the multi-sorted case

RANAN
F]_ = Jbdc /\ 1/)(i0,a(i0),caa(c))

o:i—b

STEP III. Substitute the tuple a(b) * a(c) with a tuple e of ELEM constants
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Decision Pr ure for the multi-sorted case

RANAN
F]_ = Jbdc /\ 1/)(i0,a(i0),caa(c))

o:i—b

‘ STEP III. Substitute the tuple a(b) * a(c) with a tuple e of ELEM constants

a(b) xa(c) ~ e
AN
| ibean
F2 :=dbdc s
/\ /\(dm =d, — €lm = el,n)

/ dim,dnCbxe {=1

functional
consistency
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Decision Procedure for the multi-sorted case

‘ STEP IV. “Split” the formula F5 in INDEX and ELEM parts

Va. (\q/ /\ L(x,c)) A

j=1LEM;
q
F5 := 3b 3c /\ /\ L(bj,c) A
j=1 LeM,;
_ s
P(b,c,e) A A N\ (dm =dn = erm = e n)

dm ,dp Ebkc 1=1
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Decision Procedure for the multi-sorted case

‘ STEP IV. “Split” the formula F5 in INDEX and ELEM parts

Va. (\q/ /\ L(x,c)) A

j=1LEM;
q
F5 := 3b 3c /\ /\ L(bj,c) A
j=1 LeM,;
_ s
P(b,c,e) A A N\ (dm =dn = erm = e n)

dm ,dp Ebkc 1=1

q
Vz. (V /\ L(z,c)) A
Jj=1LeM; Fp = (e)
Fr:=3b3c | q

A A Lj.e) A

j=1 LeM;

P(b,c)
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Decision Procedure for the multi-sorted case

‘ STEP IV. “Split” the formula F5 in INDEX and ELEM parts

.
q

Va. \/ /\ L(z,c) | A

j=l1LeM;
q

Fp:=3bde | A A L(bj,c) A

j=1 LeM;j

\

s

s
P(b,c,e) A /\ /\(dm =dn = €el,m = €,n)
dm, ydn €bxc =1

|\

SAT

q .
Vo, (V /\ L(z,c)) A assignment
J=1LeM; Fp := 9(e)

Fy:=3b3c | «
A A Lj.e) A

j=1 LeM;

P(b,c)

F. Alberti Decision Procedures for Flat Array Properties



Decision Pr ure for the multi-sorted case

‘ STEP V. Check if Fy is Tr-sat and if Fg is Tg-sat ‘

1 With divisibility predlcates {Dr}r>o2.
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Decision Procedure for the multi-sorted case

‘ STEP V. Check if Fy is Tr-sat and if Fg is Tg-sat ‘

q
V. (v /\ L(w,c)) A
Jj=1LeM; Fg := ¢(e)
Fr:=3b3c | 4q
A A Lj.e) A

j=1 LeM;

P(b, c)

1* With divisibility predicates {Dx }x>2-
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Decision Procedure for the multi-sorted case

‘ STEP V. Check if Fy is Tr-sat and if Fg is Tg-sat ‘

V. (\q/ /\ L(w,c)) A

Jj=1LeM; Fg = ¥(e)
Fr:=3b3c | q
A A Lj.e) A
j=1 LeEM;
¥ (b, c)
= 3I*V-fragment = Quantifier-free fragment

1* With divisibility predicates {Dx }x>2-
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Decision Pr lure for the multi-sorted case

‘ STEP V. Check if Fy is Tr-sat and if Fg is Tg-sat ‘

q
V. v /\ L(z,c)| A
j=1LeEM;

Fg :=1(e)
Fr:=3b3c | q
A A Lj.e) A
j=1 LeM;
¥ (b, c)
I*V-fragment = Quantifier-free fragment

Difference Logic*

Presburger*

Presburger* + exp [Seménovg4]
Real Arithmetic

AU U G

L Wlth divisibility predlcates {Dk}r>o2.
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Application: deciding the safety of simple&—programs
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Application: deciding the safety of simple&—pl‘ograms

Application: deciding the safety of simple&—progmms

m Flat control-flow structure

m Every loop 7 has a Flat Array
Property as acceleration

The unbounded reachability problem for simpIe&-progmms is decidable.
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Practical observations

[ simpIe&—progmms:
initialization
copying
testing
swapping

ete.
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Practical observations

[ simpIe&—progmms:
initialization
copying
testing
swapping

ete.

m The SMT-Solvers Z3 and CVC4 fail on (some) proof obligations

m especially the satisfiable ones (derived by unsafe programs)
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Conclusion

1. New decidability results for quantified fragments of theories of
arrays
m Fully declarative
m Parametric in the theories of indexes and elements
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Conclusion

1. New decidability results for quantified fragments of theories of
arrays

m Fully declarative
m Parametric in the theories of indexes and elements

2. Full decidability result for checking the safety of a class of array
programs

Thank you! Questions?
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