Decision Procedures for Flat Array Properties

F. Alberti^{1,3}, S. Ghilardi², N. Sharygina¹

¹University of Lugano, Switzerland

² University of Milan, Italy

³ Verimag, Grenoble, France

20th International Conference on Tools and Algorithms for the Construction and Analysis of Systems April 7, 2014

Context: quantified fragments of array theories

Many applications:

- Properties of the heap
- Frame axioms
- Checking user provided assertions
- Parameterized systems
- \Rightarrow Verifying array programs:
 - CEGAR-based approaches for array programs [AlbertiBG⁺12]
 - Accelerations of relations over arrays [AlbertiGS13]

Accelerations of relations over arrays

Accelerations of relations over arrays

✓ Accelerations of a class of relation over arrays is definable via \exists * \forall *-formulæ [AlbertiGS13]

Accelerations might be outside known decidable fragments [BradleyMS06, HabermehlIV08, GeM09].

Accelerations of relations over arrays

$$\tau := G(i,\mathbf{a}[i]) \quad \wedge \quad i' = i + \bar{k} \quad \wedge \quad \mathbf{a}' = \mathsf{store}(\mathbf{a},i,\mathbf{t}(\mathbf{a}[i]))$$

 \Downarrow

$$\tau^{+} := \exists y > 0. \begin{pmatrix} \forall j. \left[i \leq j < i + \bar{k} \cdot y \wedge D_{\bar{k}}(j-i) \rightarrow G(j, \mathbf{a}(j)) \right] \wedge \\ i' = i + \bar{k} \cdot y \wedge \\ \forall j. \left[\mathbf{a}'(j) = \mathbf{U}(i, j, y, \mathbf{a}(j)) \right] \end{pmatrix}$$

Quantified fragments of array theories Related work

Theory of arrays: "base" theory T + free functions **a**

Fragment of interest: $\varphi := \exists \mathbf{c} \, \forall \mathbf{i} \, \, \psi(\ \mathbf{c} \ , \ \mathbf{i} \ , \ \mathbf{a}(t) \)$

Quantified fragments of array theories Related work

Theory of arrays: "base" theory T + free functions \mathbf{a}

Fragment of interest: $\varphi := \exists \mathbf{c} \, \forall \mathbf{i} \, \psi(\mathbf{c}, \mathbf{i}, \mathbf{a}(t))$

- In general, undecidable
- If constrained, two main strategies to show decidability:
 - Instantiation-based
 - 2 Automata-based

Quantified fragments of array theories Related work

Bradley et al. "What's decidable about arrays?", VMCAI 2006.

- \blacksquare Array property: $\varphi:= \forall \mathbf{i}.F(\mathbf{i}) \to G(\ \mathbf{a}(\mathbf{i})\)$
 - $F(\mathbf{i})$ is a conjunction of atoms of the kind $i \leq j$, $i \leq t$, $t \leq i$
- I. Identify an $index \ set \ \mathcal{I}$
- II. Instantiate **i** over \mathcal{I} to obtain a quantifier-free $\psi_1 \wedge \cdots \wedge \psi_n$
- III. Standard theory-combination approaches on $\psi_1 \wedge \cdots \wedge \psi_n$
 - Complexity: NEXPTIME (NP if we fix the number of index variables)

Related work

Habermehl et al. "A Logic of Singly Indexed Arrays", LPAR 2008.

- $\varphi := \forall \mathbf{i}.F(\mathbf{i}) \to G(\mathbf{i}, \mathbf{a}(\mathbf{i} + \bar{\mathbf{k}}))$
 - \blacksquare No disjunctions in G
 - lacksquare Atoms are difference logic constraints (with equations modulo $ar{\mathbf{k}}$)
- I. Translate φ into a FCADBM¹ \mathcal{A}_{φ}
- II. Check the emptiness of $\mathcal{L}(\mathcal{A}_{\varphi})$
 - Complexity: unknown

¹Deterministic flat counter automata with difference bound transition rules

Our contribution wrt related work

Our contribution wrt related work

Our contribution wrt related work

Real Arithmetic

Our contribution wrt related work

Our contribution

Flat Array Properties

- - \bullet a(t) allowed only if t is a variable

Our contribution

Flat Array Properties

- - \bullet a(t) allowed only if t is a variable
- Mono-sorted theory: $T \cup \{a_1, \ldots, a_n\}$
 - |i| = 1
 - Requirement: T-decidability of $\exists^* \forall \exists^*$ -formulæ
 - Complexity: quadratic instance of a $\exists^* \forall \exists^* T$ -satisfiability problem

Our contribution

Flat Array Properties

- - \bullet a(t) allowed only if t is a variable
- Mono-sorted theory: $T \cup \{a_1, \ldots, a_n\}$
 - |i| = 1
 - Requirement: T-decidability of $\exists^* \forall \exists^*$ -formulæ
 - Complexity: quadratic instance of a $\exists^* \forall \exists^* T$ -satisfiability problem
- Multi-sorted theory: $T_I \cup T_E \cup \{a_1, \ldots, a_n\}$
 - INDEX atoms with at most one universally quantified variable
 - Requirement: T_I -decidability of $\exists^* \forall$ -formulæ
 - \blacksquare Requirement: $T_E\text{-decidability}$ of quantifier-free formulæ
 - Complexity if T_I, T_E are \mathbb{P}^+ : NEXPTIME-complete

$$F := \exists \mathbf{c} \ \forall \mathbf{i} \ . \psi(\ \mathbf{i}, a(\mathbf{i}), \mathbf{c}, a(\mathbf{c}) \)$$

$$\mathcal{M} \models F$$

$$F := \exists \mathbf{c} \ \forall \mathbf{i} \ . \psi(\ \mathbf{i}, a(\mathbf{i}), \mathbf{c}, a(\mathbf{c}) \)$$

$$F := \exists \mathbf{c} \ \forall \mathbf{i} \ . \psi(\ \mathbf{i}, a(\mathbf{i}), \mathbf{c}, a(\mathbf{c}) \)$$

F. Alberti

$$F := \exists \mathbf{c} \ \forall \mathbf{i} \ . \psi(\mathbf{i}, a(\mathbf{i}), \mathbf{c}, a(\mathbf{c}))$$

Step I. Guess the set of INDEX types

$$F := \exists \mathbf{c} \ \forall \mathbf{i} \ . \psi(\ \mathbf{i}, a(\mathbf{i}), \mathbf{c}, a(\mathbf{c}) \)$$

Step I. Guess the set of INDEX types

$$F := \exists \mathbf{c} \ \forall \mathbf{i} \ . \psi(\ \mathbf{i}, a(\mathbf{i}), \mathbf{c}, a(\mathbf{c})\)$$

Step I. Guess the set of INDEX types

- Consider the set K of all INDEX atoms in F (plus equalities with the \mathbf{c} constants)
- Let $\{M_1, \ldots, M_q\}$ be the set of maximal and consistent sets of literals built out of K
 - Each $L(x, \mathbf{c})$ in every M_h is an atom of K or its negation
 - All the M_h 's are mutually exclusive
- Every element of INDEX^M has to realize a type M_h :

$$\mathcal{M}_I \models \forall x. \left(\bigvee_{j=1}^q \bigwedge_{L \in M_j} L(x, \mathbf{c}) \right)$$

$$F := \exists \mathbf{c} \ \forall \mathbf{i} \ . \psi(\mathbf{i}, a(\mathbf{i}), \mathbf{c}, a(\mathbf{c}))$$

STEP II. For each $type M_h$ take a $b_h \in INDEX^{\mathcal{M}}$ realizing it

$$F := \exists \mathbf{c} \ \forall \mathbf{i} \ . \psi(\mathbf{i}, a(\mathbf{i}), \mathbf{c}, a(\mathbf{c}))$$

STEP II. For each $type M_h$ take a $b_h \in INDEX^{\mathcal{M}}$ realizing it

$$F := \exists \mathbf{c} \ \forall \mathbf{i} \ . \psi(\ \mathbf{i}, a(\mathbf{i}), \mathbf{c}, a(\mathbf{c}) \)$$

STEP II. For each type M_h take a $b_h \in INDEX^{\mathcal{M}}$ realizing it

1. Each b_h realizes the corresponding type

$$\mathcal{M}_I \models \bigwedge_{j=1}^q \bigwedge_{L \in M_j} L(b_j, \mathbf{c})$$

2. The instantiation

$$\bigwedge_{\sigma: \mathbf{i} \to \mathbf{b}} \psi(\mathbf{i}\sigma, a(\mathbf{i}\sigma), \mathbf{c}, a(\mathbf{c}))$$

is consistent

Decision Procedure for $ARR^2(T_I, T_E)$

$$F:=\exists \mathbf{c} \ \forall \mathbf{i} \ . \psi(\ \mathbf{i}, a(\mathbf{i}), \mathbf{c}, a(\mathbf{c})\)$$

$$F_{1} := \exists \mathbf{b} \, \exists \mathbf{c} \begin{bmatrix} \forall x. \left(\bigvee_{j=1}^{q} \bigwedge_{L(x, \mathbf{c})} L(x, \mathbf{c}) \right) \land \\ \bigwedge_{j=1}^{q} \bigwedge_{L \in M_{j}} L(b_{j}, \mathbf{c}) \land \\ \bigwedge_{\sigma: \mathbf{i} \to \mathbf{b}} \psi(\mathbf{i}\sigma, a(\mathbf{i}\sigma), \mathbf{c}, a(\mathbf{c})) \end{bmatrix}$$

STEP III. Substitute the tuple $a(\mathbf{b}) * a(\mathbf{c})$ with a tuple \mathbf{e} of ELEM constants

STEP III. Substitute the tuple $a(\mathbf{b}) * a(\mathbf{c})$ with a tuple \mathbf{e} of ELEM constants

$$F_1 := \exists \mathbf{b} \,\exists \mathbf{c} \left[\bigwedge_{\sigma: \mathbf{i} \to \mathbf{b}}^{\wedge} \psi(\mathbf{i}\sigma, a(\mathbf{i}\sigma), \mathbf{c}, a(\mathbf{c})) \right]$$

Step III. Substitute the tuple $a(\mathbf{b})*a(\mathbf{c})$ with a tuple \mathbf{e} of Elem constants

$$F_1 := \exists \mathbf{b} \exists \mathbf{c} \left[\bigwedge_{\sigma: \mathbf{i} \to \mathbf{b}}^{\wedge} \psi(\mathbf{i}\sigma, a(\mathbf{i}\sigma), \mathbf{c}, a(\mathbf{c})) \right]$$

STEP III. Substitute the tuple $a(\mathbf{b}) * a(\mathbf{c})$ with a tuple \mathbf{e} of ELEM constants

STEP IV. "Split" the formula F_2 in INDEX and ELEM parts

$$\begin{split} F_2 := \exists \mathbf{b} \, \exists \mathbf{c} \left[\begin{array}{c} \forall x. \begin{pmatrix} q & \bigwedge_{j=1} L(x, \mathbf{c}) \\ \bigvee_{j=1}^q & \bigwedge_{L \in M_j} L(b_j, \mathbf{c}) \\ \bigwedge_{j=1}^q & \bigwedge_{L \in M_j} L(b_j, \mathbf{c}) \\ \bar{\psi}(\mathbf{b}, \mathbf{c}, \mathbf{e}) & \wedge & \bigwedge_{d_m, d_n \in \mathbf{b} * \mathbf{c}} & \bigwedge_{l=1}^s (d_m = d_n \to e_{l,m} = e_{l,n}) \end{array} \right] \end{split}$$

STEP IV. "Split" the formula F_2 in INDEX and ELEM parts

$$\begin{split} F_2 := \exists \mathbf{b} \, \exists \mathbf{c} \left[& \forall x. \begin{pmatrix} q & \bigwedge_{j=1} L(x, \mathbf{c}) \\ \bigvee_{j=1}^q & \bigwedge_{L \in M_j} L(b_j, \mathbf{c}) \wedge \\ & \downarrow_{j=1} & L \in M_j \end{pmatrix} \right. \\ & \left. \bar{\psi}(\mathbf{b}, \mathbf{c}, \mathbf{e}) \, \wedge \, \bigwedge_{d_m, d_n \in \mathbf{b} * \mathbf{c}} \, \bigwedge_{l=1}^s (d_m = d_n \to e_{l,m} = e_{l,n}) \right] \end{split}$$

$$F_I := \exists \mathbf{b} \, \exists \mathbf{c} \begin{bmatrix} \forall x. \begin{pmatrix} q & \bigwedge_{j=1} L(x, \mathbf{c}) \\ \bigvee_{j=1}^q L \in M_j \end{pmatrix} & \wedge \\ q & \bigwedge_{j=1}^q L(b_j, \mathbf{c}) & \wedge \\ \bar{\psi}(\mathbf{b}, \mathbf{c}) & \end{bmatrix}$$

STEP IV. "Split" the formula F_2 in INDEX and ELEM parts

$$F_{I} := \exists \mathbf{b} \, \exists \mathbf{c} \left[\begin{array}{c} \forall x. \begin{pmatrix} q \\ \bigvee_{j=1}^{q} L(x, \mathbf{c}) \end{pmatrix} \wedge \\ \bigwedge_{j=1}^{q} \bigwedge_{L \in M_{j}} L(b_{j}, \mathbf{c}) \wedge \\ \bar{\psi}(\mathbf{b}, \mathbf{c}, \mathbf{e}) \wedge \bigwedge_{d_{m}, d_{n} \in \mathbf{b} * \mathbf{c}} \bigwedge_{l=1}^{s} (d_{m} = d_{n} \rightarrow e_{l, m} = e_{l, n}) \end{array} \right]$$

$$F_{I} := \exists \mathbf{b} \, \exists \mathbf{c} \left[\begin{array}{c} \forall x. \begin{pmatrix} \bigvee_{j=1}^{q} \bigwedge_{L \in M_{j}} L(x, \mathbf{c}) \\ \bigvee_{j=1}^{q} \bigwedge_{L \in M_{j}} L(x, \mathbf{c}) \end{pmatrix} \wedge \\ \bigwedge_{j=1}^{q} \bigwedge_{L \in M_{j}} L(b_{j}, \mathbf{c}) \wedge \\ \bigvee_{j=1}^{q} \bigwedge_{L \in M_{j}} L(b_{j}, \mathbf{c}) \wedge \\ \bigvee_{j=1}^{q} \bigvee_{L \in M_{j}}$$

Step IV. "Split" the formula F_2 in INDEX and ELEM parts

STEP V. Check if F_I is T_I -sat and if F_E is T_E -sat

^{1*} With divisibility predicates $\{D_k\}_{k\geq 2}$.

STEP V. Check if F_I is T_I -sat and if F_E is T_E -sat

$$F_I := \exists \mathbf{b} \, \exists \mathbf{c} \begin{bmatrix} \forall x. \begin{pmatrix} \bigvee_{j=1}^q \bigwedge_{L \in M_j} L(x, \mathbf{c}) \end{pmatrix} \land \\ \bigvee_{j=1}^q \bigwedge_{L \in M_j} L(b_j, \mathbf{c}) \land \\ \bigvee_{\bar{\psi}(\mathbf{b}, \mathbf{c})} \end{bmatrix}$$

$$F_E := \bar{\psi}(\mathbf{e})$$

^{1*} With divisibility predicates $\{D_k\}_{k\geq 2}$.

Decision Procedure for the multi-sorted case

Step V. Check if F_I is T_I -sat and if F_E is T_E -sat

$$F_I := \exists \mathbf{b} \, \exists \mathbf{c} \begin{bmatrix} \forall x. \begin{pmatrix} q & \bigwedge_{j=1} L(x, \mathbf{c}) \\ \bigvee_{j=1} & \bigwedge_{L \in M_j} L(b_j, \mathbf{c}) \end{pmatrix} \wedge \\ q & \bigwedge_{j=1} & \bigwedge_{L \in M_j} L(b_j, \mathbf{c}) \wedge \\ \bar{\psi}(\mathbf{b}, \mathbf{c}) \end{bmatrix}$$

 $\Rightarrow \exists^* \forall \text{-fragment}$

 \Rightarrow Quantifier-free fragment

^{1*} With divisibility predicates $\{D_k\}_{k>2}$.

Decision Procedure for the multi-sorted case

STEP V. Check if F_I is T_I -sat and if F_E is T_E -sat

$$F_I := \exists \mathbf{b} \, \exists \mathbf{c} \left[\begin{array}{c} \forall x. \left(\bigvee_{j=1}^q \bigwedge_{L \in M_j} L(x, \mathbf{c}) \right) \ \land \\ \\ \bigwedge_{j=1}^q \bigwedge_{L \in M_j} L(b_j, \mathbf{c}) \ \land \\ \\ \bar{\psi}(\mathbf{b}, \mathbf{c}) \end{array} \right]$$

$$F_E := \bar{\psi}(\mathbf{e})$$

Quantifier-free fragment

- ⇒ ∃*∀-fragment
- Difference Logic*
- Presburger*
- Presburger* + exp [Semënov84]
- ✓ Real Arithmetic

With divisibility predicates $\{D_k\}_{k>2}$.

Application: deciding the safety of $simple_{\mathcal{A}}^{0}$ -programs

Application: deciding the safety of $simple_{\mathcal{A}}^{0}$ -programs

Application: deciding the safety of $simple_{\mathcal{A}}^{0}$ -programs

Application: deciding the safety of $\mathsf{simple}^0_{\mathcal{A}}\text{-}programs$

- Flat control-flow structure
- Every loop τ has a Flat Array Property as acceleration

Application: deciding the safety of $simple_{\mathcal{A}}^{0}$ -programs

Application: deciding the safety of $simple_{\mathcal{A}}^{0}$ -programs

- Flat control-flow structure
- Every loop τ has a Flat Array Property as acceleration

Theorem

The unbounded reachability problem for simple $^{0}_{\mathcal{A}}$ -programs is decidable.

Practical observations

- \blacksquare simple 0_A programs:
 - initialization
 - copying
 - \blacksquare testing
 - \blacksquare swapping
 - etc.

Practical observations

- \blacksquare simple $_{\mathcal{A}}^{0}$ programs:
 - initialization
 - copying
 - testing
 - swapping
 - etc.

- The SMT-Solvers Z3 and CVC4 fail on (some) proof obligations
 - especially the satisfiable ones (derived by unsafe programs)

Conclusion

- 1. New decidability results for quantified fragments of theories of arrays
 - Fully declarative
 - Parametric in the theories of indexes and elements

Conclusion

- 1. New decidability results for quantified fragments of theories of arrays
 - Fully declarative
 - Parametric in the theories of indexes and elements
- 2. Full decidability result for checking the safety of a class of array programs

Conclusion

- 1. New decidability results for quantified fragments of theories of arrays
 - Fully declarative
 - Parametric in the theories of indexes and elements
- 2. Full decidability result for checking the safety of a class of array programs

Thank you! Questions?

References I

Francesco Alberti, Roberto Bruttomesso, Silvio Ghilardi, Silvio Ranise, and Natasha Sharygina.

Lazy abstraction with interpolants for arrays.

In Nikolaj Bjørner and Andrei Voronkov, editors, *LPAR*, volume 7180 of *Lecture Notes in Computer Science*, pages 46–61. Springer, 2012.

Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina. Definability of accelerated relations in a theory of arrays and its applications.

In *FroCos*, pages 23–39, 2013.

References II

In E. Allen Emerson and Kedar S. Namjoshi, editors, *VMCAI*, volume 3855 of *Lecture Notes in Computer Science*, pages 427–442. Springer, 2006.

Yeting Ge and Leonardo M. de Moura.

Complete instantiation for quantified formulas in satisfiability modulo theories.

In Ahmed Bouajjani and Oded Maler, editors, *CAV*, volume 5643 of *Lecture Notes in Computer Science*, pages 306–320. Springer, 2009.

References III

Peter Habermehl, Radu Iosif, and Tomás Vojnar.

A logic of singly indexed arrays.

In Iliano Cervesato, Helmut Veith, and Andrei Voronkov, editors, LPAR, volume 5330 of $Lecture\ Notes\ in\ Computer\ Science$, pages 558–573. Springer, 2008.

A.L. Semënov.

Logical theories of one-place functions on the set of natural numbers.

Izvestiya: Mathematics, 22:587–618, 1984.