Decision Procedures for Flat Array Properties

F. Alberti1,3, S. Ghilardi2, N. Sharygina1

1University of Lugano, Switzerland
2 University of Milan, Italy
3 Verimag, Grenoble, France

20th International Conference on Tools and Algorithms for the Construction and Analysis of Systems
April 7, 2014
Many applications:

- Properties of the heap
- Frame axioms
- Checking user provided assertions
- Parameterized systems

⇒ Verifying array programs:
 - CEGAR-based approaches for array programs [AlbertiBG+12]
 - Accelerations of relations over arrays [AlbertiGS13]
Accelerations of relations over arrays is definable via ∃∗∀∗-formulæ [AlbertiGS13].

Accelerations might be outside known decidable fragments [BradleyMS06, HabermehlIV08, GeM09].
Accelerations of a class of relation over arrays is definable via \(\exists^* \forall^* \)-formulæ [AlbertiGS13]

Accelerations might be outside known decidable fragments [BradleyMS06, HabermehlIV08, GeM09].
Accelerations of relations over arrays

$$\tau := G(i, a[i]) \land i' = i + \bar{k} \land a' = \text{store}(a, i, t(a[i]))$$

$$\downarrow$$

$$\tau^+ := \exists y > 0. \left(\forall j. \left[i \leq j < i + \bar{k} \cdot y \land D_{\bar{k}}(j - i) \rightarrow G(j, a(j)) \right] \land \right.$$

$$i' = i + \bar{k} \cdot y \land$$

$$\forall j. \left[a'(j) = U(i, j, y, a(j)) \right]$$
Quantified fragments of array theories

Related work

Theory of arrays: “base” theory $T + \text{free functions } a$

Fragment of interest: $\varphi := \exists c \forall i \, \psi(\ c \ , \ i \ , \ a(t) \)$
Quantified fragments of array theories

Related work

Theory of arrays: “base” theory $T +$ free functions a

Fragment of interest: $\varphi := \exists c \forall i \psi(c, i, a(t))$

- In general, undecidable

- If constrained, two main strategies to show decidability:

 1. Instantiation-based
 2. Automata-based

- Array property: $\varphi := \forall i. F(i) \rightarrow G(a(i))$
 - $F(i)$ is a conjunction of atoms of the kind $i \leq j$, $i \leq t$, $t \leq i$

I. Identify an index set \mathcal{I}

II. Instantiate i over \mathcal{I} to obtain a quantifier-free $\psi_1 \land \cdots \land \psi_n$

III. Standard theory-combination approaches on $\psi_1 \land \cdots \land \psi_n$

- Complexity: NExpTime (NP if we fix the number of index variables)
Quantified fragments of array theories

Related work

\[\varphi := \forall i. F(i) \rightarrow G(i, a(i + \bar{k})) \]

- No disjunctions in \(G \)
- Atoms are difference logic constraints (with equations modulo \(\bar{k} \))

I. Translate \(\varphi \) into a FCADBM\(^ 1 \) \(\mathcal{A}_\varphi \)

II. Check the emptiness of \(\mathcal{L}(\mathcal{A}_\varphi) \)

- Complexity: unknown

\(^1\)Deterministic flat counter automata with difference bound transition rules
Quantified fragments of array theories

Our contribution wrt related work
Quantified fragments of array theories

Our contribution wrt related work
Quantified fragments of array theories

Our contribution wrt related work

Presburger + exp

Presburger

APF

SIL

Real Arithmetic
Quantified fragments of array theories
Our contribution wrt related work

Presburger + exp

Flat Array Properties

Presburger

APF

SIL

Real Arithmetic
Our contribution
Flat Array Properties

\[\varphi := \exists c \forall i. \psi (i, a(i), c, a(c)) \]
- \(a(t)\) allowed only if \(t\) is a variable
Our contribution
Flat Array Properties

- \(\varphi := \exists c \forall i. \psi(i, a(i), c, a(c)) \)
- \(a(t) \) allowed only if \(t \) is a variable

- Mono-sorted theory: \(T \cup \{a_1, \ldots, a_n\} \)
 - \(|i| = 1\)
 - Requirement: \(T \)-decidability of \(\exists^* \forall^* \)-formulæ
 - Complexity: quadratic instance of a \(\exists^* \forall^* T \)-satisfiability problem
Our contribution
Flat Array Properties

- $\varphi := \exists c \forall i. \psi(i, a(i), c, a(c))$
 - $a(t)$ allowed only if t is a variable

- Mono-sorted theory: $T \cup \{a_1, \ldots, a_n\}$
 - $|i| = 1$
 - Requirement: T-decidability of $\exists^* \forall^* \exists^*$-formulae
 - Complexity: quadratic instance of a $\exists^* \forall^* T$-satisfiability problem

- Multi-sorted theory: $T_I \cup T_E \cup \{a_1, \ldots, a_n\}$
 - INDEX atoms with at most one universally quantified variable
 - Requirement: T_I-decidability of $\exists^* \forall$-formulae
 - Requirement: T_E-decidability of quantifier-free formulae
 - Complexity if T_I, T_E are \mathbb{P}^+: NEXPTime-complete
Decision Procedure for the multi-sorted case

\[F := \exists c \ \forall i . \psi(i, a(i), c, a(c)) \]

\[M \models F \]
Decision Procedure for the multi-sorted case

\[F := \exists c \ \forall i . \psi(i, a(i), c, a(c)) \]

\[\mathcal{M} \models F \]
Decision Procedure for the multi-sorted case

\[F := \exists c \, \forall i \, \psi(i, a(i), c, a(c)) \]

\[\mathcal{M} \models F \]

\[a^\mathcal{M} \text{ is a } \text{total function from } \text{INDEX}^\mathcal{M} \text{ to } \text{ELEM}^\mathcal{M} \]
Decision Procedure for the multi-sorted case

\[F := \exists c \ \forall i . \psi(i, a(i), c, a(c)) \]

Step I. Guess the set of INDEX *types*
\[F := \exists c \forall i . \psi(i, a(i), c, a(c)) \]

Step I. Guess the set of \texttt{INDEX} types

\[\text{INDEX}^M \]

\[\text{ELEM}^M \]
Decision Procedure for the multi-sorted case

\[F := \exists c \forall i. \psi(\ i, a(i), c, a(c)) \]

STEP I. Guess the set of INDEX types

- Consider the set \(K \) of all INDEX atoms in \(F \) (plus equalities with the \(c \) constants)
- Let \(\{M_1, \ldots, M_q\} \) be the the set of maximal and consistent sets of literals built out of \(K \)
 - Each \(L(x, c) \) in every \(M_h \) is an atom of \(K \) or its negation
 - All the \(M_h \)'s are mutually exclusive
- Every element of INDEX-M has to realize a type \(M_h \):

\[\mathcal{M}_I \models \forall x. \left(\bigwedge_{j=1}^{q} \bigwedge_{L \in M_j} L(x, c) \right) \]
\[F := \exists c \, \forall i \, \psi(i, a(i), c, a(c)) \]

Step II. For each type \(M_h \) take a \(b_h \in \text{INDEX}^M \) realizing it.
Decision Procedure for the multi-sorted case

\[F := \exists c \ \forall i . \psi(i, a(i), c, a(c)) \]

Step II. For each type \(M_h \) take a \(b_h \in \text{INDEX}^M \) realizing it
Decision Procedure for the multi-sorted case

\[F := \exists c \ \forall i . \psi(i, a(i), c, a(c)) \]

Step II. For each type \(M_h \) take a \(b_h \in \text{INDEX}^M \) realizing it

1. Each \(b_h \) realizes the corresponding type

\[M_I \models \bigwedge_{j=1}^{q} \bigwedge_{L \in M_j} L(b_j, c) \]

2. The instantiation

\[\bigwedge_{\sigma : i \to b} \psi(i\sigma, a(i\sigma), c, a(c)) \]

is consistent
Decision Procedure for $\text{ARR}^2(T_I, T_E)$

\[F := \exists c \ \forall i . \psi(i, a(i), c, a(c)) \]

\[F_1 := \exists b \ \exists c \left[\forall x. \left(\bigvee_{j=1}^{q} \bigwedge_{L \in M_j} L(x, c) \right) \land \bigwedge_{j=1}^{q} \bigwedge_{L \in M_j} L(b_j, c) \land \bigwedge_{\sigma: i \rightarrow b} \psi(i \sigma, a(i \sigma), c, a(c)) \right] \]
STEP III. Substitute the tuple $a(b) \ast a(c)$ with a tuple e of ELEM constants.
Step III. Substitute the tuple \(a(b) \star a(c) \) with a tuple \(e \) of ELEM constants.
Decision Procedure for the multi-sorted case

\[F_1 := \exists b \exists c \left[\ldots \land \bigwedge_{\sigma : i \rightarrow b} \psi(i\sigma, a(i\sigma), c, a(c)) \right] \]

Step III. Substitute the tuple \(a(b) \ast a(c) \) with a tuple \(e \) of \(\text{ELEM} \) constants
Decision Procedure for the multi-sorted case

\[F_1 := \exists b \exists c \left[\cdots \land \bigwedge_{\sigma : i \rightarrow b} \psi(i\sigma, a(i\sigma), c, a(c)) \right] \]

Step III. Substitute the tuple \(a(b) \ast a(c) \) with a tuple \(e \) of ELEM constants

\[a(b) \ast a(c) \leadsto e \]

\[F_2 := \exists b \exists c \left[\cdots \land \neg \psi(b, c, e) \land \bigwedge_{d_m, d_n \in b \ast c} \bigwedge_{l=1}^s (d_m = d_n \rightarrow e_{l,m} = e_{l,n}) \right] \]

functional consistency
Decision Procedure for the multi-sorted case

STEP IV. “Split” the formula F_2 in INDEX and ELEM parts

\[
F_2 := \exists b \exists c \left[\forall x. \left(\bigvee_{j=1}^{q} \bigwedge_{L \in M_j} L(x, c) \right) \land \bigwedge_{j=1}^{q} \bigwedge_{L \in M_j} L(b_j, c) \land \bar{\psi}(b, c, e) \land \bigwedge_{d_m, d_n \in b \ast c} \bigwedge_{l=1}^{s} (d_m = d_n \rightarrow e_{l,m} = e_{l,n}) \right]
\]
Decision Procedure for the multi-sorted case

Step IV. “Split” the formula F_2 in INDEX and ELEM parts

$$F_2 := \exists b \exists c \left[\forall x. \left(\bigvee_{j=1}^{q} \bigwedge_{L \in M_j} L(x, c) \right) \land \bigwedge_{j=1}^{q} \bigwedge_{L \in M_j} L(b_j, c) \land \bar{\psi}(b, c, e) \land \bigwedge_{d_m, d_n \in b \ast c} \bigwedge_{l=1}^{s} (d_m = d_n \rightarrow e_{l,m} = e_{l,n}) \right]$$

$$F_I := \exists b \exists c \left[\forall x. \left(\bigvee_{j=1}^{q} \bigwedge_{L \in M_j} L(x, c) \right) \land \bigwedge_{j=1}^{q} \bigwedge_{L \in M_j} L(b_j, c) \land \bar{\psi}(b, c) \right]$$

$$F_E := \bar{\psi}(e)$$
Decision Procedure for the multi-sorted case

Step IV. “Split” the formula F_2 in INDEX and ELEM parts

$$F_2 := \exists b \exists c \left[\forall x. \left(\bigvee_{j=1}^{q} \bigwedge_{L \in M_j} L(x, c) \right) \land \bigwedge_{j=1}^{q} \bigwedge_{L \in M_j} L(b_j, c) \land \bar{\psi}(b, c, e) \land \bigwedge_{d_m, d_n \in b \ast c} \bigwedge_{l=1}^{s} (d_m = d_n \rightarrow e_{l,m} = e_{l,n}) \right]$$

$$F_I := \exists b \exists c \left[\forall x. \left(\bigvee_{j=1}^{q} \bigwedge_{L \in M_j} L(x, c) \right) \land \bigwedge_{j=1}^{q} \bigwedge_{L \in M_j} L(b_j, c) \land \bar{\psi}(b, c) \right]$$

$$F_E := \bar{\psi}(e)$$
STEP IV. “Split” the formula F_2 in INDEX and ELEM parts

$$F_2 := \exists b \exists c \left[\forall x. \left(\bigvee_{j=1}^{q} \bigwedge_{L \in M_j} L(x, c) \right) \land \right.$$
$$\left. \bigwedge_{j=1}^{q} \bigwedge_{L \in M_j} L(b_j, c) \land \bar{\psi}(b, c, e) \land \bigwedge_{d_m, d_n \in b \ast c} \bigwedge_{l=1}^{s} (d_m = d_n \rightarrow e_{l,m} = e_{l,n}) \right]$$

$$F_I := \exists b \exists c \left[\forall x. \left(\bigvee_{j=1}^{q} \bigwedge_{L \in M_j} L(x, c) \right) \land \right.$$
$$\left. \bigwedge_{j=1}^{q} \bigwedge_{L \in M_j} L(b_j, c) \land \bar{\psi}(b, c) \right]$$

$$F_E := \bar{\psi}(e)$$
Decision Procedure for the multi-sorted case

Step V. Check if F_I is T_I-sat and if F_E is T_E-sat

1* With divisibility predicates $\{D_k\}_{k \geq 2}$.
Decision Procedure for the multi-sorted case

Step V. Check if F_I is T_I-sat and if F_E is T_E-sat

\[F_I := \exists b \exists c \left[\forall x. \left(\bigvee_{j=1}^{q} \left(\bigwedge_{L \in M_j} L(x, c) \right) \right) \land \bigwedge_{j=1}^{q} \left(\bigwedge_{L \in M_j} L(b_j, c) \right) \land \bar{\psi}(b, c) \right] \]

\[F_E := \bar{\psi}(e) \]

With divisibility predicates $\{D_k\}_{k \geq 2}$.
Step V. Check if F_I is T_I-sat and if F_E is T_E-sat

\[
F_I := \exists b \exists c \left[\forall x. \left(\bigvee_{j=1}^{q} \bigwedge_{L \in M_j} L(x, c) \right) \land \bigwedge_{j=1}^{q} \bigwedge_{L \in M_j} L(b_j, c) \land \bar{\psi}(b, c) \right]
\]

\[
F_E := \bar{\psi}(e)
\]

$\Rightarrow \exists^* \forall$-fragment

\Rightarrow Quantifier-free fragment

1* With divisibility predicates $\{D_k\}_{k\geq2}$.
Decision Procedure for the multi-sorted case

STEP V. Check if F_I is T_I-sat and if F_E is T_E-sat

$$F_I := \exists b \exists c \left[\forall x. \left(\bigvee_{j=1}^{q} \bigwedge_{L \in M_j} L(x, c) \right) \land \bigwedge_{j=1}^{q} \bigwedge_{L \in M_j} L(b_j, c) \land \bar{\psi}(b, c) \right]$$

$$F_E := \bar{\psi}(e)$$

$\Rightarrow \exists^* \forall$-fragment

✓ Difference Logic*

✓ Presburger*

✓ Presburger* + exp [Semënov84]

✓ Real Arithmetic

\Rightarrow Quantifier-free fragment

1^* With divisibility predicates $\{D_k\}_{k \geq 2}$.
Application: deciding the safety of simple0_A-programs
Application: deciding the safety of simple$_A^0$-programs

- Flat control-flow structure
- Every loop τ has a Flat Array Property as acceleration
Application: deciding the safety of simple\(^0_A\)-programs

- Flat control-flow structure
- Every loop \(\tau\) has a Flat Array Property as acceleration

Theorem

The unbounded reachability problem for simple\(^0_A\)-programs is decidable.
Practical observations

- $\text{simple}^0_\mathcal{A}$-programs:
 - initialization
 - copying
 - testing
 - swapping
 - etc.
Practical observations

- simple0_A-programs:
 - initialization
 - copying
 - testing
 - swapping
 - etc.

- The SMT-Solvers Z3 and CVC4 fail on (some) proof obligations
 - especially the satisfiable ones (derived by unsafe programs)
1. New decidability results for quantified fragments of theories of arrays
 - Fully declarative
 - Parametric in the theories of indexes and elements
1. New decidability results for quantified fragments of theories of arrays
 - Fully declarative
 - Parametric in the theories of indexes and elements

2. Full decidability result for checking the safety of a class of array programs
Conclusion

1. New decidability results for quantified fragments of theories of arrays
 - Fully declarative
 - Parametric in the theories of indexes and elements

2. Full decidability result for checking the safety of a class of array programs

Thank you! Questions?
Francesco Alberti, Roberto Bruttomesso, Silvio Ghilardi, Silvio Ranise, and Natasha Sharygina.
Lazy abstraction with interpolants for arrays.

Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina.
Definability of accelerated relations in a theory of arrays and its applications.
In FroCos, pages 23–39, 2013.

Peter Habermehl, Radu Iosif, and Tomás Vojnar.
A logic of singly indexed arrays.
In Iliano Cervesato, Helmut Veith, and Andrei Voronkov, editors,

A.L. Semënov.
Logical theories of one-place functions on the set of natural numbers.