
An SMT-based verification framework for
software systems handling arrays

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Francesco Alberti

under the supervision of

Natasha Sharygina

April 2015

Dissertation Committee

Nikolaj Bjørner Microsoft Research, Redmond, WA, USA

Rolf Krause Università della Svizzera Italiana, Lugano, Switzerland

Viktor Kuncak École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Nate Nystrom Università della Svizzera Italiana, Lugano, Switzerland

Dissertation accepted on 15 April 2015

Research Advisor PhD Program Directors

Natasha Sharygina Igor Pivkin Stefan Wolf

i

I certify that except where due acknowledgement has been given, the work

presented in this thesis is that of the author alone; the work has not been sub-

mitted previously, in whole or in part, to qualify for any other academic award;

and the content of the thesis is the result of work which has been carried out

since the official commencement date of the approved research program.

Francesco Alberti

Lugano, 15 April 2015

ii

Abstract

Recent advances in the areas of automated reasoning and first-order theorem

proving paved the way to the developing of effective tools for the rigorous formal

analysis of computer systems. Nowadays many formal verification frameworks

are built over highly engineered tools (SMT-solvers) implementing decision

procedures for quantifier-free fragments of theories of interest for (dis)proving

properties of software or hardware products.

The goal of this thesis is to go beyond the quantifier-free case and enable

sound and effective solutions for the analysis of software systems requiring the

usage of quantifiers. This is the case, for example, of software systems handling

array variables, since meaningful properties about arrays (e.g., “the array is

sorted”) can be expressed only by exploiting quantification.

The first contribution of this thesis is the definition of a new Lazy Ab-

straction with Interpolants framework in which arrays can be handled in a

natural manner. We identify a fragment of the theory of arrays admitting

quantifier-free interpolation and provide an effective quantifier-free interpola-

tion algorithm. The combination of this result with an important preprocessing

technique allows the generation of the required quantified formulæ.

Second, we prove that accelerations, i.e., transitive closures, of an inter-

esting class of relations over arrays are definable in the theory of arrays via

∃∗∀∗-first order formulæ. We further show that the theoretical importance of

this result has a practical relevance: Once the (problematic) nested quantifiers

are suitably handled, acceleration offers a precise (not over-approximated) al-

ternative to abstraction solutions.

Third, we present new decision procedures for quantified fragments of the

theories of arrays. Our decision procedures are fully declarative, parametric

in the theories describing the structure of the indexes and the elements of the

arrays and orthogonal with respect to known results.

Fourth, by leveraging our new results on acceleration and decision proce-

dures, we show that the problem of checking the safety of an important class

of programs with arrays is fully decidable.

iii

iv

The thesis presents along with theoretical results practical engineering strate-

gies for the effective implementation of a framework combining the aforemen-

tioned results: The declarative nature of our contributions allows for the defini-

tion of an integrated framework able to effectively check the safety of programs

handling array variables while overcoming the individual limitations of the

presented techniques.

Contents

Contents iv

List of List of Figures ix

List of List of Tables xi

1 Introduction 1

1.1 Automated formal verification 1

1.1.1 Challenges in automated formal verification for software

handling arrays . 5

1.2 Contributions of the thesis . 9

1.2.1 Lazy Abstraction with Interpolants for Arrays 10

1.2.2 Acceleration techniques for relations over arrays 11

1.2.3 Decision procedures for Flat Array Properties 12

1.2.4 Deciding the safety of a class of programs with arrays . . 14

1.2.5 Booster: an acceleration-based verification framework

for programs with arrays 14

2 Background 17

2.1 Formal preliminaries and notational conventions 17

2.1.1 Quantifier-free interpolation and quantifier elimination . 20

2.2 Satisfiability Modulo Theories 21

2.2.1 Examples of theories . 21

2.2.2 General undecidability results for arrays of integers . . . 25

2.2.3 Definable function and predicate symbols 28

2.3 Array-based transition systems and their safety 29

2.3.1 Array-based transition systems 29

2.4 Safety and invariants . 33

v

vi Contents

3 Lazy Abstraction with Interpolants for Arrays 35

3.1 Background . 38

3.2 Unwindings for the safety of array-based transition systems . . . 39

3.2.1 Labeled unwindings for the safety of array-based systems 40

3.2.2 On checking the safety and completeness of labeled un-

windings . 44

3.3 Lazy abstraction with interpolation-based refinement for arrays 45

3.3.1 The two sub-procedures of Unwind 46

3.3.2 Checking the feasibility of counterexamples 47

3.3.3 Refining counterexamples with interpolants 50

3.3.4 An interpolation procedure for quantifier-free formulæ . . 52

3.4 Correctness and termination . 54

3.4.1 Precisely recognizing complete labeled unwindings 55

3.4.2 Termination of Unwind 56

3.5 Related work . 59

3.5.1 Predicate abstraction . 59

3.5.2 Abstract interpretation 60

3.5.3 Theorem Proving . 61

3.5.4 Shape analysis and Separation Logic 62

3.5.5 Template-based approaches 62

3.6 Summary . 63

3.6.1 Related publications . 63

4 SMT-based Abstraction For Arrays with Refinement by Inter-

polation 65

4.1 Implementation and heuristics 66

4.1.1 Term Abstraction . 68

4.1.2 Minimizing counterexamples 70

4.1.3 Instantiating universal quantifiers 73

4.1.4 Exploration strategy . 73

4.1.5 Filtering instances . 74

4.1.6 Primitive differentiated form 75

4.2 Experiments . 75

4.2.1 Benchmarks . 75

4.2.2 Importance of the heuristics 79

4.3 Discussion . 81

4.4 Related work . 81

4.5 Summary . 82

4.5.1 Related publications . 83

Contents vii

5 Acceleration techniques for relations over arrays 89

5.1 SMT-based backward reachability 91

5.1.1 Backward reachability 91

5.1.2 Classification of sentences and transitions 92

5.2 Definability of Accelerated Relations 96

5.2.1 Iterators, selectors and local ground assignments 96

5.2.2 Accelerating local ground assignments 99

5.2.3 Sub-fragments of acceleratable assignments 104

5.3 Acceleration-based backward reachability and monotonic abstrac-

tion . 105

5.3.1 Monotonic Abstraction 106

5.3.2 An acceleration-based backward reachability procedure . 109

5.4 Experimental evaluation . 110

5.5 Related work . 113

5.6 Summary . 113

5.6.1 Related publications . 114

6 Decision procedures for Flat Array Properties 115

6.1 Background notation . 117

6.2 The mono-sorted case . 117

6.2.1 The decision procedure SATMONO 117

6.2.2 Correctness and completeness 118

6.3 The multi-sorted case . 119

6.3.1 The decision procedure SATMULTI 121

6.3.2 Correctness and Completeness 123

6.3.3 Complexity Analysis. 127

6.4 Related work . 131

6.5 Summary . 133

6.5.1 Related publications . 134

7 Deciding the safety of a class of programs with arrays 135

7.1 Background . 135

7.2 A decidability result for the reachability analysis of flat array

programs . 137

7.3 A class of array programs with decidable reachability problem . 138

7.4 Summary . 141

7.4.1 Related publications . 141

viii Contents

8 Booster: a verification framework for programs with arrays 143

8.1 Architecture of Booster . 144

8.1.1 Preprocessing . 145

8.1.2 Abstract Interpreter . 146

8.1.3 Acceleration (1) . 148

8.1.4 Bounded Model Checking 150

8.1.5 Transition System generation 151

8.1.6 Fixpoint engine – MCMT 151

8.1.7 Portfolio approach . 152

8.2 Experimental evaluation . 152

8.2.1 Advantages over precise backward reachability 154

8.2.2 Benefits of each technique 155

8.2.3 Acceleration vs. Abstraction 159

8.2.4 The combined framework 161

8.3 Summary . 161

8.3.1 Related publications . 162

9 Conclusions 165

List of Figures

1.1 Running times for CPAchecker and cbmc on the sort pro-

cedure. 6

2.1 The procedure Running. 31

2.2 The control-flow graph of the procedure Running. 32

3.1 Covering associated with a labeled unwinding proving the safety

of the Running procedure (the entire labeled unwinding has 77

vertices and 188 edges). The variable z0 has sort INDEX and is

introduced during backward reachability. 43

3.2 A candidate counterexample generated by the Expand procedure. 51

3.3 Path obtained by refining the counterexample in Figure 3.2. . . 52

4.1 The architecture of safari. 66

4.2 Part of the labeled unwinding for the Running procedure. MV (v68)∧
pc = lI is AEI -satisfiable and MV (v35)∃ |=AE

I
MV (v31)∃. 70

5.1 The BReach backward reachability procedure. 92

5.2 A function for reversing the elements of an array I into another

array O. 94

5.3 The ABReach backward reachability procedure. 110

7.1 The initEven procedure (a) and its control-flow graph (b). 136

8.1 The architecture of Booster. 144

8.2 Two equivalent representations of the same program. The one

on the right allows for the application of acceleration procedures. 146

8.3 The mergeInterleave procedure (a) and its control-flow graph (b). 149

ix

x List of Figures

8.4 Comparison between the precise backward reachability proce-

dure and the precise backward reachability procedure enhanced

with abstract interpretation (a), precise acceleration (b), ap-

proximated acceleration (c), lazy abstraction with interpolants

(d). 154

8.5 Strength of abstract interpretation with respect to precise ac-

celeration (a), approximated acceleration (b), lazy abstraction

with interpolants (c) and the three techniques together (d). . . . 156

8.6 Strength of precise acceleration with respect to abstract inter-

pretation (a), approximated acceleration (b), lazy abstraction

with interpolants (c) and the three techniques together (d). . . . 157

8.7 Strength of approximated acceleration with respect to abstract

interpretation (a), precise acceleration (b), lazy abstraction with

interpolants (c) and the three techniques together (d). 158

8.8 Strength of lazy abstraction with interpolants with respect to ab-

stract interpretation (a), precise acceleration (b), approximated

acceleration (c) and the three techniques together (d). 160

8.9 Comparison between abstraction and acceleration. 161

8.10 Strength of Booster with all its features enabled with respect

to Booster when one of its feature is disabled: abstract inter-

pretation (a), precise acceleration (b), approximated accelera-

tion (c) and the lazy abstraction with interpolants (d). 162

List of Tables

2.1 Some properties of interest for an array a of length size. 25

4.1 safari experiments (running time) on Suite 1. 84

4.2 safari experiments (number of refinements) on Suite 1. 85

4.3 safari experiments (running time) on Suite 2. 86

4.4 safari experiments (number of refinements) on Suite 2. 87

5.1 Experiments on Suite 1: running time for safari and mcmt.

safari has been executed with both Term Abstraction and

Counterexample Minimization enabled. A ‘x’ indicates that the

tool was not able to converge in the given time out of 1 hour. . 111

5.2 Experiments on Suite 2: running time for safari and mcmt.

safari has been executed with both Term Abstraction and

Counterexample Minimization enabled. A ‘x’ indicates that the

tool was not able to converge in the given time out of 1 hour. . 112

xi

xii List of Tables

Chapter 1

Introduction

Computer systems have a central role in modern society: almost all of to-

day’s industry depends critically on software either directly in the products

or indirectly during the production, and the safety, cost-efficiency and envi-

ronmentally friendliness of infrastructure, including the electric grid, public

transportation, and health care, rely increasingly on correctly working hard-

ware. The increasing role of computer systems in society means that the con-

sequences of faults can be catastrophic. As a result proving the correctness of

software is widely thought to be one of the most central challenges for computer

science.

The aim of this thesis is developing theoretical frameworks, engineering

techniques and computing infrastructures for the automatic, effective and rig-

orous analysis of software systems handling arrays. This is a highly challenging

task, still out of reach for the modern state-of-the-art verification techniques.

1.1 Automated formal verification

Formal methods are nowadays gaining more and more importance in the area

of software and hardware analysis from an academic and industrial perspec-

tive (see, e.g., [Lecomte, 2008,Newcombe, 2014]) given their ability to produce

proofs of correctness. Formal methodologies for the analysis of software or

hardware systems require a preliminary modeling phase where the system and

its properties of interests are formally described. The analysis is subsequently

performed on a logical-mathematical level. Formal methods are becoming in-

tegral part of the development process of computer systems, from requirement

analysis to, of course, verification, as witnessed, for example, by the recent

publication of the DO-333 document, Formal Methods Supplement to DO-178C

1

2 Introduction

and DO-278A [RTCA, 2011], officially recognizing the use of formal methods

as a means for certifying the dependability and reliance of computer systems

in safety-critical domains.

We can distinguish two different groups of formal methodologies. One, gen-

erally called deductive verification, relies on tools like Coq, Isabelle/HOL,

STeP, PVS, etc. This approach is interactive and is driven by the user’s

understanding of the system under validation. Fully automated decision pro-

cedures deal with some sub-problems (also called sub-goals) from which it is

possible to infer the correctness of the system with respect to a given property.

An advantage of deductive verification is that it can deal with infinite-state

systems.

Another well-known formal method is model-checking. Model-checking was

born as a technique for the verification of hardware systems [Clarke et al.,

2001]. In this setting, the input system is formally represented by a transition

system, modeling how the system reacts to external inputs and how it changes

its internal configuration according to them. Properties of interests are for-

malized as temporal logic formulæ. Model-checking attracted, in the last three

decades, the attention of academic and industrial worlds thanks to its distin-

guishing features. First, it is a completely automatic technique requiring no

complex interactions with the user, after the preliminary stage of modeling the

system. Second, whenever the analyzed system can exhibit a faulty execution,

model-checking is able to produce the input values testifying such undesired

behavior (called counterexample). Third, a model-checker performs an exhaus-

tive exploration of all possible behaviors of the model: the reported absence

of unwanted executions therefore ensures that no behaviors of the model can

violate the given property.

The inventors of model checking E. M. Clarke, E. A. Emerson and J.

Siphakis won in 2007 the prestigious Turing Award, witnessing the impor-

tance of this technology in the verification and validation of computer systems:

“Their innovations transformed [model checking] approach from a theoretical

technique to a highly effective verification technology that enables computer

hardware and software engineers to find errors efficiently in complex system

designs” [ACMs Press Release on the 2007 A.M. Turing Award recipients.,

2007].

The weak-point of model-checking is that it can deal, in its original formula-

tion, only with finite-state systems, i.e., systems admitting only finitely many

reachable configurations. Even more, if the number of reachable configura-

tions is huge, model-checking techniques might exhaust the available resources

without being able to find whether the input system satisfies or not the given

1.1 Automated formal verification 3

property. This is generally called the state-space explosion problem. This

problem has been tackled with the help of abstraction techniques. Abstraction

involves, in general terms, loss of information. In our context, abstracting a

system means removing all the details that are not relevant, or, better, are sup-

posed not to be relevant, for generating a proof of correctness of the system.

If details are removed, the reachable state-space of the system is more coarsely

represented and its exploration needs, therefore, less resources. We can say

that the “level of abstraction” of a system indicates the amount of details we

are keeping. High level of abstraction indicates a coarse abstraction, where very

few details of the system are kept, and a high reduction of the state-space. Low

level of abstraction allows to know very precise (i.e., almost concrete) facts of

the system, but might also result in a tiny reduction of the state-space with

only little benefits for model-checking algorithms. Given well known undecid-

able results about program analysis, there cannot be an algorithm that outputs

the correct level of abstraction to which abstracting a system for performing

a proof of its correctness. This implies that the level of abstraction has to be

either fixed a-priori, with the countereffect of reporting false alarms in case we

select a too coarse abstraction, or iteratively refined until a proper one (if any)

will be found. The price to pay in the latter case is admitting non-terminating

analysis runs, always refining the level of abstraction. This thesis will fit within

the latter schema.

Abstraction is one of the fundamental techniques adopted for the formal

analysis of software systems. Software systems are generally checked against

their assertions, i.e., the goal is to automatically infer whether a piece of code

admits an execution violating one of its assertions1. These are all safety induc-

tive properties. A proof of safety, in this case, is called safe inductive invariant.

Safe means that the invariants describe (an over-approximation of) the sets of

possible configurations of the analyzed program not including those which vi-

olates its assertions. Inductive means that the invariants include the starting

configuration of the program and any computation starting from a configura-

tion described by an invariant can only reach configurations still represented

by such invariant.

The most widely adopted technique for abstracting a system is called pred-

icate abstraction [Graf and Säıdi, 1997]. Predicates are quantifier-free formulæ

over the set of variables handled by the system under verification. With pred-

icate abstraction, the reachable configurations of the system are grouped to-

gether according to the predicates they satisfy. To make a parallel with the

1Code can have “implicit” assertions like division by zero, out-of-bound accesses, etc.

4 Introduction

previous informal discussion about abstraction, the set of predicates induces

the level of abstraction. Notably, if P is the set of predicates on which we

are abstracting the system, the number of reachable states that have to be

analyzed is reduced to at most 2|P | states. Interestingly, predicate abstraction

can be applied to systems admitting infinite reachable state-space. This is the

case of software system, where infinitely many configurations are caused by the

dynamic usage of memory.

If we are given a system S (representing a computer system) and a set of

predicates P , an abstraction-based model-checking algorithm will start con-

structing an abstract system SP in such a way that the set of possible exe-

cutions of S is a sub-set of those of SP ; the vice-versa does not hold. Thus,

any safety property that holds for the executions of SP also holds for those

of S. If there exists an abstract counterexample, i.e., an execution πP of SP
not satisfying the property, we cannot directly conclude that there exists an

execution of S violating the property. If πP induces a concrete counterexample

π of S, then S has a bug, and π proves it. If such π does not exist, πP is said

to be a spurious counterexample, and SP must be refined. This is the idea be-

hind the CounterExample Based Abstraction Refinement framework, generally

called CEGAR [Clarke et al., 2000]. Refinement works on the set of predicates

P . The goal is to enlarge the set of predicates P to P ′ in such a way that the

spurious counterexample πP will become infeasible also in SP ′
.

Enabling effective and automatic refinement procedures is the main chal-

lenge of CEGAR. State-of-the-art refinement procedures exploit the spurious

counterexample in order to find the new set P ′ excluding them from SP ′
. In

particular, refinement is carried out with the help of Craig interpolants [Craig,

1957]. Given a spurious counterexample πP , an interpolant-based refinement

procedure generates a formula φπP that is satisfiable iff πP admits a feasible

execution π of S. If not, new predicates are computed as follows: Given a pair

(A,B) of inconsistent formulæ, a Craig interpolant is a formula I built over the

common vocabulary of A and B, entailed by A and unsatisfiable when put in

conjunction with B. For refinement, the interpolant I may contain additional

predicates and can be used to eliminate the part B of the counter-example

that does not correspond to any execution of the concrete program while leav-

ing A untouched. In this sense, in addition to discovering new predicates, the

abstract program is refined locally by eliminating only part of the abstraction

(namely, B) that gives rise to a counter-example. This is the idea behind the

Lazy Abstraction with Interpolants framework [McMillan, 2006], which will

play a central role in this thesis.

A complementary approach to abstraction is acceleration. This is another

1.1 Automated formal verification 5

well-known technique in the model-checking literature. It relies on the gen-

eration of relations encoding the transitive closure of (part of) the transition

relation symbolically encoding system evolution. Acceleration is applied to

cyclic action of systems in order to find their reachable state-space in ‘one

shot’. This avoids divergence of the state-space exploration algorithm and

provides a precise representation of the reachable state-space. The problem

with acceleration is that transitive closure is a very powerful formalism that

goes beyond first-order logic. This might prevent practical implementation of

acceleration-based solutions for the analysis of real programs. On the other

side, acceleration allows to prove important decidability results about software

systems, as is has been done, for example, in [Bozga et al., 2014].

1.1.1 Challenges in automated formal verification for soft-

ware handling arrays

The presence of array variables introduces a new level of complexity invali-

dating the effectiveness of the vast majority of the available software model-

checking techniques. Let us consider, for example, a sorting procedure taken

from [Armando et al., 2007b]:

void sort(int a[] , int N) {

int sw = 1;

while (sw) {

sw = 0;

int i = 1;

while (i < N) {

if (a[i-1] > a[i]) {

int t = a[i];

a[i] = a[i-1];

a[i-1] = t;

sw = 1;

}

}

i = i + 1;

}

}

We want to verify that, at the end of the procedure, the array a has been

sorted. In order to do this, we need to add the piece of code

6 Introduction

0

100

200

300

400

500

600

700

2 3 4 5 6 7 8 9

T
im

e
(s
)

Array dimension

(a)

0

10

20

30

40

50

60

2 3 4 5 6 7 8 9

T
im

e
(s
)

Array dimension

(b)

Figure 1.1. Running times for CPAchecker and cbmc on the sort procedure.

for (int x = 0 ; x < N ; x++) {

for (int y = x + 1 ; y < N ; y++) {

assert(a[x] <= a[y]);

}

}

Figure 1.1 reports running times for CPAchecker and cbmc2 on the sort

procedure for increasing values of the size N of the array a.

CPAchecker is a tool implementing (an advanced version of) the Lazy

Abstraction with Interpolants approach. cbmc, instead, is one of the most effi-

cient implementation of the Bounded Model-Checking (BMC) program analysis

methodology [Biere et al., 1999]. This verification approach unrolls a bounded

number κ of times the control-flow graph of a program searching for a feasible

erroneous execution, i.e., an execution violating the program assertions. These

unwinding of the control-flow graph are translated into a set of formulæ whose

satisfiability implies that a bug is present in the code. These techniques are

inherently incomplete, as they can only prove the presence or absence of bugs

for executions with bounded length up to κ. Despite BMC is inherently incom-

plete, in some situations it is possible to establish a value κ which is sufficient

to consider to guarantee the safety of executions of the program of arbitrary

length. For the sort procedure, this number is κ = N + 1.

2We selected cbmc and CPAchecker as they won the first and second place, respectively,
of the overall category in the 3rd International Competition on Software Verification (SV-
COMP’14, [Beyer, 2014]).

1.1 Automated formal verification 7

Unfortunately, there are no tools, to the best of our knowledge, dealing

with array programs with the help of acceleration.

The graphics in Figure 1.1 show an exponential behavior for both tools3.

Booster, the tool implementing the results presented in this thesis that will

be introduced in chapter 8, verifies the correctness of the sort procedure in 8.7

seconds, and does it for a version of the sort procedure where the parameter N

is left parameterized. This means that the performance of Booster does not

depend on the actual value on N and does non change with different values for

this symbolic constant.

The problem here is that the analysis of programs with arrays requires

the ability to be able to reason in terms of quantified predicates. This is a

non-trivial task invalidating many formal verification approaches. Indeed, the

vast majority of state-of-the-art tools for the formal verification of infinite-state

systems (e.g., [Cousot et al., 2005,Clarke et al., 2004,Beyer et al., 2007a,McMil-

lan, 2006, Seghir et al., 2009, Hoder and Bjørner, 2012, Beyer and Keremoglu,

2011, Albarghouthi et al., 2012b]), beside implementing different analysis al-

gorithms with innovative features, share the common limitation of working at

a quantifier-free level. This is justified by the fact that logical engines like

SMT-Solvers offer efficient decision procedures for quantifier-free fragments of

theory of interests from a program analysis perspective. Only very recently

some solvers started offering support for quantified fragments of theories with

practical relevance (see, e.g., [Ge and de Moura, 2009,Ge et al., 2009,Reynolds

et al., 2013, Bouton et al., 2009]). We expect that in the future always more

tools for the analysis of computer systems will take advantage from this offer.

The problems with quantification is that decidable quantified fragments of

mostly exploited theories might have a computational complexity prohibitive

for interesting applications (e.g., quantifier elimination for Presburger Arith-

metic is triple exponential [Oppen, 1978]) or might not admit a decision proce-

dure at all. In fact, it is well known that (alternation of) quantifiers may easily

lead to incompleteness results [Börger et al., 1997]. For these reasons, enabling

automated formal techniques (dis)proving the safety of computer system at a

level beyond the quantifier-free one is considered to be a major challenge.

In this thesis we will target the following open problems:

I. Identifying an abstraction framework suitable for generating and han-

dling quantified predicates. In such a framework three requirements are

3cbmc (v4.3) has been executed with the option --unwind N+1,
while for the CPAchecker evaluation we enabled the options
-predicateAnalysis-PredAbsRefiner-ABEl-UF; We would like to thank Dirk Beyer
and his group for their support in running CPAchecker.

8 Introduction

mandatory:

• Identification of a fragment F of a first-order theory constituting

a good trade-off between expressivity and efficiency. Such fragment

has to be powerful enough in order to represent properties of interest

for systems with arrays, and at the same time, being tractable from

a computational point of view.

• Unsatisfiability of formulæ representing infeasible abstract counterex-

amples for systems handling arrays has to be decidable. This a key

requirement for the lazy abstraction paradigm since it allows to de-

tect if the abstract model has to be refined.

• The refinement procedure in charge to discover new predicates has

to deal with quantified formulæ, i.e., has to synthesize quantified

predicates. This is not a trivial task: quantifier-free refinement has

the advantage of being highly incremental, meaning that the safe

inductive invariant is build step after step from the refutation of

single and concrete counterexamples. The “standard” theory of ar-

rays does not admit quantifier-free interpolation [Kapur et al., 2006],

and this problem kills such incrementality. Moreover, introduction

of quantified predicates deserve a lot of attention since, in general,

(alternation of) quantifiers may easily lead to undecidability results

and therefore might prevent the availability of sound practical imple-

mentations. In our case, in addition, new predicates have to belong

to the class F described above.

II. Investigating the definability of accelerations for relations over arrays and

counters. A positive solution to this theoretical problem leads to another

problem, i.e., how to apply acceleration to the verification of systems.

In other words, in general, accelerations of relations encoding programs

body – in our case those over arrays and counters – cannot be defined in

first-order logic. Exceptional fragments of relations admitting firs-order

definability of acceleration would likely allow it at some price (e.g., extra

quantification), requiring further investigation in order to be practically

exploited.

III. Identifying new decidable fragments of the theories of arrays. This investi-

gation will be a natural follow-up to the achievements obtained as answers

to the open problems of (II). Indeed, the positive theoretical result about

the first-order definability of accelerations of relations of arrays and coun-

1.2 Contributions of the thesis 9

ters may lead to deeper results about the decidability of the safety of a

class of programs with arrays.

IV. Analyzing interleaving strategies for a mutually beneficial integration of

techniques for the generation of invariants addressing the points (I), (II)

and (III) with other complementary static analysis solutions.

1.2 Contributions of the thesis

In this thesis we will work in a declarative setting, where the analysis of a

computer system is performed by manipulating logical formulæ. This gives

several advantages. First, the declarative formalism is close to real specifica-

tions and can be retrieved from them just by syntactic translations (as dis-

cussed in section 2.3). Moreover, our formal model is not specific for programs

but encompasses more applications, e.g., from the parameterized verification

of fault-tolerant protocols [Alberti et al., 2010a, Alberti et al., 2012d] to the

analysis of access-control policies [Alberti et al., 2011a, Alberti et al., 2011b].

Second, the analysis frameworks we present in this thesis exploit existing tech-

nologies (SMT-solving) avoiding the need of ad-hoc implementations. In addi-

tion, they benefit both on the theoretical and practical level from advances in

mathematical logic. Third, integrating several different and orthogonal anal-

ysis techniques (as we will do in chapter 8) is quite easy, and reduces only to

the task of establishing the correct interfaces of the techniques collaborating

in the analysis of the input programs.

We contribute to the area of formal verification of programs handling arrays

with the following innovations:

• A quantifier-free interpolation procedure for a fragment of the theory of

arrays, allowing for the extension of the Lazy Abstraction with Inter-

polants framework [McMillan, 2006] to a quantified level (chapter 3).

• A tool, safari, implementing the above framework enhanced with heuris-

tics to tune interpolation procedures and help convergence of the frame-

work (chapter 4).

• The theoretical identification of a class of relations over arrays admit-

ting definable first-order acceleration (modulo the theory of Presburger

arithmetic enriched with free function symbols) (chapter 5, section 5.2).

• A pragmatic solution for exploiting acceleration procedures for the anal-

ysis of programs with arrays (chapter 5, section 5.3).

10 Introduction

• The definition of a new decidable quantified fragment of the theories of

arrays (chapter 6).

• The identification of class of programs with arrays admitting a decidable

reachability analysis (chapter 7).

• A tool, Booster, efficiently integrating all the aforementioned contri-

butions in a single framework comprising, as well, other standard state-

of-the-art static analysis procedures (chapter 8).

In the remaining part of the chapter we shall discuss in detail each of the

contributions mentioned above.

1.2.1 Lazy Abstraction with Interpolants for Arrays

Lazy Abstraction with Interpolants (lawi, [McMillan, 2006]) is one of the most

efficient abstraction-based frameworks for the analysis of software systems. It

is capable of tuning the abstraction by using different degrees of precision for

different parts of the program by keeping track of both the control-flow graph,

which describes how the program locations are traversed, and the data-flow,

which describes what holds at a program location. The control-flow is repre-

sented explicitly, while the data-flow is symbolically encoded with quantifier-

free first-order formulæ and it is subjected to abstraction. The procedure is

therefore based on a CounterExample Guided Abstraction Refinement (CE-

GAR) loop [Clarke et al., 2000] in which the control-flow graph is iteratively

unwound, and the data in the newly explored locations is overapproximated.

When reaching an error location, if the path is spurious, i.e., the quantifier-free

formula representing the manipulations of the data along the path is unsatis-

fiable, the abstraction along the path is refined. In state-of-the-art methods,

this is done by means of interpolants [Henzinger et al., 2004,McMillan, 2006].

The procedure terminates when a non-spurious path is found, or when reaching

an inductive invariant.

When arrays come into the picture, the situation is complicated by at least

two problems. First, the need to handle quantified formulæ (as opposed to

just quantifier-free) to take care of meaningful array properties; e.g., a typical

post-condition of a sorting algorithm is the following universally quantified

formula:

∀i, j. (0 ≤ i < j ≤ a.length)→ a[i] ≤ a[j]

expressing the fact that the array a is sorted, where a.length represents the

symbolic size of a. Second, the difficulty of computing quantifier-free inter-

1.2 Contributions of the thesis 11

polants. In [Kapur et al., 2006], it is shown that quantifiers must occur in

interpolants of quantifier-free formulæ for the “standard” theory of arrays.

Research contribution. In chapter 3 of this thesis we describe a new ver-

ification approach that addresses the above problems. It redefines the lazy

abstraction method based on interpolation, which is known to be one of the

most effective approaches in program verification (section 3.2) and makes it

possible to reason about arrays of unknown length by defining (i) an instanti-

ating procedure to check the infeasibility of formulæ encoding counterexamples

of array programs and (ii) a new quantifier-free interpolation procedure for a

fragment of the theory of arrays suitable to represent counterexamples of array

programs (section 3.3).

We also discuss, in chapter 4, the implementation strategies and the heuris-

tics enabled in safari, a tool implementing our new lazy abstraction with

interpolants framework.

These results have been published in [Alberti et al., 2012a, Alberti et al.,

2012c,Alberti et al., 2014a].

1.2.2 Acceleration techniques for relations over arrays

Acceleration is a well-known approach, orthogonal to abstraction, used to com-

pute precisely the set of reachable states of a transition system. It requires to

compute the transitive closure of relations expressing the system evolution.

A major limitation reduces the applicability of acceleration. The problem is

that, by definition, the transitive closure of a relation requires very powerful

logical formalisms, like ones supporting infinite disjunctions or fixed points.

Furthermore, for such expressive formalisms it is problematic to find efficient

solvers (if any at all), which can be used in verification. To exploit acceleration

in practice, therefore, it is required to identify special conditions on the rela-

tion making its transitive closure first-order definable within a suitable theory,

like Presburger arithmetic. This is exactly the approach taken by relevant lit-

erature investigating numerical domains; when arrays come into the picture,

additional complications arise, however, due to the fact that in order to model

arrays one must enrich Presburger arithmetic with free function symbols. As

a result, different – and more complicated – classes of transitions need to be

handled.

Research contribution. Chapter 5 contributes the state-of-the-art of acceleration-

based analysis techniques with both theoretical and practical new results.

12 Introduction

First, we show that inside the theory of Presburger arithmetic augmented

with free function symbols (added to model array variables), the acceleration

of some classes of relations – corresponding, in our application domain, to rela-

tions involving arrays and counters – can be expressed in first order language.

This result comes at a price of allowing nested quantifiers. Such nested quan-

tification can be problematic in practical applications. To address this compli-

cation we show, as a second contribution, how to take care of the quantifiers

added by the acceleration procedure: the idea is to import in this setting the

so-called monotonic abstraction technique [Abdulla et al., 2007a,Abdulla et al.,

2007b,Alberti et al., 2012d]. Third, we experimentally show that acceleration

and abstraction have orthogonal strengths in the analysis of programs. This

will lead to the establishment of the Booster integrated framework described

in chapter 8.

These results have been published in [Alberti et al., 2013b].

1.2.3 Decision procedures for Flat Array Properties

In the world of SMT-based static analysis solutions there is an increasing de-

mand for procedures dealing with quantified fragments of the theories exploited

in several applications, like LIA and the theories of arrays. Quantified for-

mulæ are required in several tasks in verification, like modeling properties of

the heap, asserting frame axioms, checking user defined assertions, defining

axioms for extra theories and reason about parameterized systems.

The price for (universal4) quantification is often decidability: EUF , the the-

ory of Equality and Uninterpreted Functions, is only semi-decidable if we allow

quantifiers. Satisfiability for universally quantified formulæ over EUF∪LIA is

not even semi-decidable. Nonetheless, the problem of checking the satisfiability

(modulo theories) of quantified formulæ got a lot of attention in the last years,

with the goal of finding practical and efficient solutions to patterns of prob-

lems instead of focusing on more general – but likely less efficient – strategies.

For some fragments of important theories it is possible to identify complete

instantiation procedures [Bradley et al., 2006,Ge and de Moura, 2009]. Other

theories of interest admit quantifier elimination procedures5, as, for example,

the theory of Linear Arithmetic over Integers [Cooper, 1972]. Remarkably,

quantifier-elimination procedures can be exploited as decision procedures, but

4Usually a quantified formula is converted in NNF (Negative Normal Form) and then
Skolemized. This returns an equisatisfiable formula with, at most, universal quantifiers.

5A theory T admits a quantifier elimination procedure iff for every formula ϕ it is possible
to compute a T -equivalent quantifier-free formula ϕ′.

1.2 Contributions of the thesis 13

they rarely scale on big formulæ, since their complexity is usually high. For

example, in the case of LIA a complexity bound for quantifier-elimination has

been studied in [Oppen, 1978] and the best results in this area, to the best of

our knowledge, are those recently reported by Bjørner in [Bjørner, 2010].

Outside such notable fragments, heuristics have to be designed to deal with

quantifiers. The most implemented heuristic for handling universal quantifiers

is the matching modulo equalities (E-matching) one [Detlefs et al., 2003]. This

strategy exploit a given pattern to find suitable instances for the universally

quantified variables. Instances of quantified formulæ are usually generated

incrementally (since number of matches can be exponential). E-matching is

not refutationally complete and, in practice, it requires “ground seed” to be

applied6. E-matching, in general, can be adopted to handle quantifiers only if

we are interested in checking the unsatisfiability of formulæ by providing good

instantiation patterns increasing the chances to generate the required instances

to detect the inconsistency.

Research contribution. In chapter 6 we will identify new decidable fragments

of the monosorted and multisorted theories of arrays. We call the new decid-

able fragments Flat Array Properties, given that decidability is achieved by

enforcing, among other restrictions, ‘flatness’ limitations on dereferencing, i.e.,

only positions named by variables are allowed in dereferencing.

We examine Flat Array Properties in two different settings. In one case, we

consider Flat Array Properties over the theory of arrays generated by adding

free function symbols to a given theory T modeling both indexes and elements

of the arrays (section 6.2). In the other one, we take into account Flat Array

Properties over a theory of arrays built by connecting two theories TI and TE
describing the structure of indexes and elements (section 6.3). Our decidabil-

ity results are fully declarative and parametric in the theories T , TI , TE. For

both settings, we provide sufficient conditions on T and TI , TE for achieving

the decidability of Flat Array Properties. Such hypotheses are widely met by

theories of interest in practice, like Presburger arithmetic. Our decision pro-

cedures reduce the decidability of Flat Array Properties to the decidability of

T -formulæ in one case and TI- and TE-formulæ in the other case. We also an-

alyze the complexity of our decision procedure when instantiated with theories

of interests from a practical perspective (section 6.3.3).

These results have been published in [Alberti et al., 2014c, Alberti et al.,

6No way to check the unsatisfiability of ∀x.p(x) ∧ ∀x.¬p(x) by applying E-matching so-
lutions.

14 Introduction

2015].

1.2.4 Deciding the safety of a class of programs with arrays

Reachability analysis plays a crucial role in program verification. It relies on

algorithms for computing the fixed point of the transition relation representing

program’s evolution and checking if any behavior leads to the violation of a

given property. Since computation of the concrete fixed point is intractable in

general, reachability analysis has been always coupled with solutions (like the

abstraction-based ones listed above) devised to cope with the (unavoidable)

divergence phenomena.

Research contribution. Chapter 7 is dedicated to the identification of a class

of programs handling arrays or strings admitting decidable reachability anal-

ysis. Our result builds upon the results of chapters 5 and 6. The class of

programs we identified includes non-recursive procedures implementing for in-

stance searching, copying, comparing, initializing, replacing and testing func-

tions.

These results have been published in [Alberti et al., 2014c, Alberti et al.,

2013a,Alberti et al., 2015].

1.2.5 Booster: an acceleration-based verification framework

for programs with arrays

Verifying the safety of software systems is a hard task. The generation of

safe inductive invariants may require the cooperation of different techniques,

each contributing with its own distinguishing features to the generation of

the required proof of correctness for the input system. Combining different

techniques for enabling the efficient analysis of complex inputs is a common

practice in software verification (see, e.g., [Albarghouthi et al., 2012a, Henry

et al., 2012]).

Research contribution. Starting from the experimental evaluation of sec-

tion 5.4, we developed a tool, Booster, combining the abovelisted contribu-

tions.

Booster integrates abstraction frameworks like the one described in chap-

ter 3 with standard abstraction-based invariant generation framework, e.g.,

abstract interpretation [Cousot and Cousot, 1977]. In addition, Booster

exploits acceleration in two different ways. Accelerations of loops falling in

1.2 Contributions of the thesis 15

decidable fragments are handled precisely, following the schema presented in

chapter 6. Those requiring over-approximations and suitable refinement pro-

cedures (as discussed in chapter 5) are handled by an improved version of the

mcmt model-checker [Alberti et al., 2014d], the fixpoint engine integrated in

Booster.

Moreover, Booster integrates the abstraction and acceleration procedures

in a verifying compiler framework nullifying the degree of user interaction and

making the verification process completely automatic.

These results have been published in [Alberti et al., 2014d, Alberti et al.,

2014b,Alberti and Monniaux, 2015].

16 Introduction

Chapter 2

Background

This chapter introduces background concepts and terminology that is used in

the rest of the thesis.

To make this document self-contained, we introduce in section 2.1 standard

notions about syntax and semantics of first-order logic along with notational

conventions we shall adopt in the thesis. Section 2.2 presents some theories of

interest for the thesis and discusses some general undecidability results of the

quantified fragment of the theory of arrays. Section 2.3 introduces the notion

of array-based transition system, the formal model we will use to represent the

computer systems of interest for this work.

2.1 Formal preliminaries and notational conven-

tions

Definition 2.1.1 (Signature). A signature Σ is defined in terms of a set of

sorts {σ1, . . . , σn}, a (possibly empty) set of function symbols and a (possibly

empty) set of predicate symbols. Each function f and predicate p is endowed

with an arity of the form σ1 × · · · × σn → σ and σ1 × · · · × σn, respectively.

We assume that symbols are not overloaded. This means that each symbol

is assigned to one and only one sort. We assume also the existance of the

equality symbols =σi , one for each sort of every signature Σ considered ence-

forth. Function symbols of arity 0 are called (individual) constants, predicates

of arity 0 are propositional constants. Another assumption we make for every

considered signature is the existence of sets of countably many variables Vσi ,

one for each sort.

17

18 Background

Definition 2.1.2 (Term). A Σ-term t of sort σ is a variable in Vσ, a constant

of sort σ or an expression of the kind f(t1, . . . , tn), where f is an n-ary function

symbol from Σ of arity σ1 × · · · × σn → σ and each term ti has sort σi.

Definition 2.1.3 (Atoms). A Σ-atom (or atomic formula) is

• a propositional constant;

• an expression of the kind p(t1, . . . , tn), where p is a predicate of Σ of arity

σ1 × · · · × σn and each ti is a Σ-term of sort σi;

• an expression of the kind t1 =σ t2, where t1 and t2 are two terms of sort

σ.

Definition 2.1.4 (Formulae). A Σ-formula is a Σ-atom or an expression of

the kind ¬α, α ∧ β, ∀σx.α, where α and β are Σ-formulæ and x is a variable

of sort σ.

A literal is an atom or its negation. A clause is a disjunction of literals. A

ground formula is a formula where variables do not occur. A formula without

free variables is called a sentence (or a closed formula). A formula without

quantifiers is called quantifier-free. We use lower-case Greek letters φ, ϕ, ψ, . . .

for quantifier-free formulæ and α, β, . . . for arbitrary formulæ. We will use

the standard Boolean abbreviations: “α ∨ β” stands for “¬α ∧ ¬β”, “α→ β”

for “¬α ∨ β”, “α ↔ β” for “(α → β) ∧ (β → α)”, “∃σx.α” for “¬∀σx.¬α”,

where α and β are formulæ. > and ⊥ represent the formulæ α ∨ ¬α and

α∧¬α, respectively, for any sentence α. When writing formulæ we will usually

omit the brackets according to the following priorities: we stipulate that ¬
has the strongest priority and that ∧ and ∨ have stronger priority than →.

An occurrence of a variable x in α is said to be bounded if it is within the

scope of a quantifier of α, so if it is located in a sub-formula of α of the form

∀σx.β, otherwise x is said to be free in α. A variable is free in a formula α if

it has at least one free occurrence in α. A prenex formula is a formula of the

form Q1x1 . . . Qnxnϕ(x1, . . . , xn), where Qi ∈ {∃,∀} and x1, . . . , xn are pairwise

different variables. Q1x1 · · ·Qnxn is the prefix of the formula.

Notationally, variables will be denoted by lower-case Latin letters x, a, i, e,

Tuples of variables will be denoted by underlined letters x, a, i, e, . . . or bold

face letters like a,v, Bold face letters will be mainly used for tuples of

variables which are generally fixed (e.g., variables handled by a program), un-

derlined letters will denote tuples of variables which length may vary. For any

variable v, v′ is a primed copy of v. v(n) is a copy of v with n primes, v′ is a

2.1 Formal preliminaries and notational conventions 19

copy of v where every symbol has been primed and v(n) is a copy of v where

every symbol has n primes, for any tuple of variables v. When we use u = v,

we assume that two tuples have equal length, say n (i.e. n := |u| = |v|) and

that u = v abbreviates the formula
∧n
i=1 ui = vi.

With E(x) we denote that the syntactic expression (term, formula, tuple

of terms or of formulæ) E contains at most the free variables in the tuple x.

Similarly, we may use t(a, s, x), φ(a, s, x), . . . to mean that the term t or the

quantifier-free formula φ have free variables included in x and that the free

function and free constants symbols occurring in them are among a, s. No-

tations like t(u/x), φ(u/x), . . . or t(u1/x1, . . . , un/xn), φ(u1/x1, . . . , un/xn), . . .

- or occasionally just t(u), φ(u), . . . if confusion does not arise - are used for

simultaneous substitutions within terms and formulæ.

Definition 2.1.5 (Structure). A Σ-structure M is a function having as a

domain Σ and defined as follows:

• every sort symbol is associated to a non-empty set |M|σi (the disjoint

union of the |M|σi’s is called the support of M);

• every predicate symbol p of arity σ1 × · · · × σn is associated to a set

pM ⊆ |M|σ1 × · · · × |M|σn;

• every function symbol f of arity σ1×· · ·×σn → σ is associated to a total

function fM : |M|σ1 × · · · × |M|σn → |M|σ.

We denote with σM, fM, pM, . . . the “interpretation” in M of the sort σ,

the function symbol f and the predicate symbol p.

If Σ0 is a sub-signature of Σ, the structureM|Σ0 results fromM by forget-

ting about the interpretation of the sort, the function and predicate symbols

that are not in Σ0 and M|Σ0 is called the reduct of M to Σ0.

Definition 2.1.6 (Assignment). Given a Σ-structure M, a Σ-assignment is a

function s mapping each Σ-term of sort σ to an element in the set |M|σ. It is

defined as follows:

s(t) =

v ∈ |M|σ if t is a variable of sort σ

cM if t is the constant c

fM(s(t1), . . . , s(tn)) if t is of the kind f(t1, . . . , tn)

To avoid an unnecessary overloading of the notation, if confusion will not

arise, we shall assume the well-sortedness of all the expressions and omit the

specification of the sort symbols.

20 Background

Definition 2.1.7 (Satisfiability). Given a signature Σ, a Σ-formula α and a

Σ-structure M, the relation M, s |= α (“α is true in M under the satisfying

assignment s”) is inductively defined as follows:

• M, s |= t1 = t2 iff s(t1) = s(t2)

• M, s |= p(t1, . . . , tn) iff (s(t1), . . . , s(tn)) ∈ pM

• M, s |= ¬α iff M, s 6|= α

• M, s |= α1 ∧ α2 iff M, s |= α1 and M, s |= α2

• M, s |= ∀σx.α iff M, s{x 7→v} |= α for every v ∈ |M|σ

where s{x 7→v} indicates that s maps the variable x to the symbol v.

Definition 2.1.8 (Theory). A theory T is a pair (Σ, C), where Σ is a signature

and C is a class of Σ-structures; the structures in C are called the models of

T .

A Σ-formula φ is T -satisfiable if there exists a Σ-structure M in C such

that φ is true in M under a suitable assignment to the free variables of φ

(in symbols, when ϕ is a sentence and no free variable assignment is needed,

we write M |= ϕ); it is T -valid (in symbols, T |= ϕ) if its negation is T -

unsatisfiable. Two formulæ ϕ1 and ϕ2 are T -equisatisfiable iff if there exist

a model of T and a free variable assignment in which ϕ1 holds, then there

exist a model of T and a free variable assignment in which also ϕ2 holds, and

vice-versa; they are T -equivalent if ϕ1 ↔ ϕ2 is T -valid; ψ1 T -entails ψ2 (in

symbols, ψ1 |=T ψ2) iff ψ1 → ψ2 is T -valid.

2.1.1 Quantifier-free interpolation and quantifier elimination

Two interesting properties of first-order theories are quantifier-free interpola-

tion and quantifier elimination.

Definition 2.1.9 (Quantifier-free interpolation). A theory T has quantifier-

free interpolation iff there exists an algorithm that, given two quantifier-free

Σ-formulæ φ, ψ such that φ ∧ ψ is T -unsatisfiable, returns a quantifier-free Σ-

formula θ, the interpolant, such that: (i) φ |=T θ; (ii) θ∧ψ is T -unsatisfiable;

(iii) only the free variables common to φ and ψ occur in θ.

Definition 2.1.10 (Quantifier elimination). A theory T admits quantifier

elimination if and only if for any arbitrary Σ-formula α(x) it is always possible

to compute a quantifier-free formula ϕ(x) such that T |= ∀x.(α(x)↔ ϕ(x)).

2.2 Satisfiability Modulo Theories 21

Quantifier-elimination implies quantifier-free interpolation. Let (A,B) be

two inconsistent formulæ over a given signature. We can compute an inter-

polant for this pair by executing quantifier elimination to a formula I obtained

by existentially quantifying the variables not belonging to B from the A for-

mula.

In general, every pair of unsatisfiable formulæ admits an interpolant (see,

e.g., [Hodges, 1993, §6.6]). Such interpolant is not ensured to be quantifier-free,

though.

2.2 Satisfiability Modulo Theories

In the last two decades, many static analysis tasks strongly benefited from

the advances in automated deduction and theorem proving. In particular,

Satisfiability Modulo Theories (SMT) solving played – and still plays – a central

role in several and heterogeneous solutions for program analysis and verification

[de Moura and Bjørner, 2011].

Given a theory T = (Σ, C), the satisfiability modulo the theory T problem,

in symbols SMT (T), amounts to establishing the T -satisfiability of quantifier-

free Σ-formulæ. Given a theory T with decidable SMT (T) problem, if T
admits quantifier elimination, then T is decidable, i.e., the T -satisfiability of

every formula is decidable.

2.2.1 Examples of theories

In this thesis we will mainly work with programs handling arrays of integers.

We will now introduce several theories that are particular relevant in this ap-

plication domain, and discuss their properties (quantifier-elimination, interpo-

lation, decidability of sub-fragments, etc.).

Enumerated data-type

The first theory we introduce is the mono-sorted theory of an enumerated data-

type {e1, ..., en} in which the interpretation of the sort is a set of cardinality

n, the signature of the theory contains only n constant symbols that are inter-

preted as the n distinct elements in the interpretation of the sort. The SMT

problem for an enumerated data-type theory is decidable and every enumerated

datatype theory has quantifier-free interpolation. As we will see, theories of

enumerated-data types are useful to model the Boolean values (true and false)

as well as the locations l0, ..., ln of a program.

22 Background

Linear Integer Arithmetic

A second relevant theory that will be used in this thesis is Linear Integer Arith-

metic, LIA. The signature of this theory has a single sort INT, the constants

0 and 1, the binary function symbols + and −, the binary predicate < and

infinitely many unary predicates Dk, for each integer k greater than 11. Se-

mantically, the intended class of models for LIA contains just the structure

whose support is the set of the integer numbers. INT is interpreted as Z, the

symbols 0, 1,+,−, < have the obvious interpretation over the integers and Dk

is interpreted as the sets of integers divisible by k. The SMT (LIA) problem is

decidable and it is NP-complete [Papadimitriou, 1981]. In addition, LIA ad-

mits quantifier elimination (the extra predicates Dk are needed to get quantifier

elimination [Oppen, 1978]).

Although LIA represents the fragment of arithmetic mostly used in formal

approaches for the static analysis of systems, there are many other fragments

that have quantifier elimination and can be quite useful; these fragments can

be both weaker (like Integer Difference Logic, IDL) and stronger (like the

exponentiation extension of Semënov theorem) than LIA.

Integer Difference Logic The theory IDL is a sub-theory of LIA whose

atoms are written in the form (0 ./ x−y+n̄), such that ./∈ {≤, <, 6=,=,≥, >},
and n̄ is a numeral2. We can assume that the quantifier-free fragment of IDL
is made by Boolean combinations of atoms of the kind 0 ≤ y − x + n̄ [Sebas-

tiani, 2007]. Decision procedures for the SMT(IDL) problem exploit the fact

that a set of IDL quantifier-free atoms induces a graph with weighted edges of

the kind y
n̄−→ x. The set of atoms is inconsistent iff the graph admits cycle of

negative weight [Nieuwenhuis and Oliveras, 2005]. This shows that the satisfi-

ability of a set of IDL quantifier-free atoms can be checked in polynomial time

by adopting a standard algorithm for the analysis of graphs, e.g., the Floyd-

Warshall algorithm [Floyd, 1962], having a complexity of O(|V |3), where V is

the set of variables of the problem. IDL admits quantifier-free interpolation

and quantifier-elimination (see, e.g., [Cimatti et al., 2010]).

Linear Integer Arithmetic with exponentiation Let exp2 be a unary func-

tion symbol that associates a number n to 2n. The theory having as a signature

1Recall that we assumed the availability of the = symbol for each sort of each signature
we consider.

2The nth numeral is the term 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

2.2 Satisfiability Modulo Theories 23

the set of symbols of LIA with the addition of exp2 is still decidable and admits

quantifier-elimination [Semënov, 1984]. This implies that this theory admits

quantifier-free interpolation.

Theory of arrays

Theories of arrays are theories parameterized in terms of the theories specifying

the algebraic structures of the indexes and the elements of the arrays. There

exist two ways of introducing arrays in a declarative setting, generating two

different groups of theories: the mono-sorted theories of arrays, that will be

denoted with ARR1(T), and the multi-sorted theories of arrays, denoted with

ARR2(TI , TE). The former is more expressive because (roughly speaking) it

allows to consider indexes also as elements3, but might be computationally

more difficult to handle.

The following definition identifies a class of formulæ that will be exploited

in the whole thesis.

Definition 2.2.1 (Flatness). Let T be a theory of arrays. An expression in

the signature of T is said to be flat iff for every term of the kind a(t) occurring

in it (here a is a free function symbol), the sub-term t is always a variable.

Notably, every formula admits an equisatisfiable flat counterpart, obtained

by exploiting the rewriting rule

φ(a(t), ...) ∃x.(x = t ∧ φ(a(x), ...))

Mono-sorted case

The mono-sorted theory ARR1(T) of arrays over T is obtained from a given

theory T by adding to it infinitely many (fresh) free unary function symbols.

This means that the signature of ARR1(T) is obtained from Σ by adding to

it unary function symbols and that a structure M is a model of ARR1(T) iff

(once the interpretations of the extra function symbols are disregarded) it is a

structure belonging to the original class C.

Lemma 2.2.1. Let T be a theory having decidable SMT problem. Then the

SMT(ARR1(T)) problem is decidable.

3This is useful in the analysis of programs, where pointers to a heap region of the memory,
modeled as an array m, are stored into a variable on the stack, i.e., are elements of m itself.

24 Background

Proof. Let ψ(x, a(x)) be a formula over the signature of ARR1(T), where |a| = s

and |x| = t. We can assume that ψ is a flat formula. The Ackermann’s

expansion of ψ is obtained by replacing every function application with a fresh

variable and by adding all the functional consistency constraints required. That

is, consider a tuple e = 〈ek,l〉 of variables (of appropriate sort), with 1 ≤ k ≤ s

and 1 ≤ l ≤ t. The formula

ψ(x, e) ∧

 ∧
xi,xj∈x

xi = xj →
|a|∧
k=1

ek,i = ek,j

is T -satisfiable iff ψ(x, a(x)) is (ARR1(T))-satisfiable.

An alternative to Ackermann’s expansion for solving the SMT(ARR1(T))

problem would be adopting a more general framework for checking the satis-

fiability of a quantifier-free formula over a theory obtained as a combination

of two (or more) theories, e.g., [Nelson and Oppen, 1979]. As shown in [Brut-

tomesso et al., 2006], none of the two techniques is generally more efficient than

the other.

Multi-sorted case

In order to build a multi-sorted theory of arrays, instead, we need two ingredient

theories, TI = (ΣI , CI) and TE = (ΣE, CE). We can freely assume that ΣI and

ΣE are disjoint (otherwise we can rename some symbols); for simplicity, we let

both signatures be mono-sorted: let us call INDEX the unique sort of TI and

ELEM the unique sort of TE. The multi-sorted theory ARR2(TI , TE) of arrays

over TI and TE is obtained from the union of ΣI ∪ΣE by adding to it infinitely

many (fresh) free unary function symbols (these new function symbols will

have domain sort INDEX and codomain sort ELEM). The models of ARR2(TI , TE)

are the structures whose reducts to the symbols of sorts INDEX and ELEM are

models of TI and TE, respectively.

Lemma 2.2.2. Let TI and TE be two theories having decidable SMT problem.

Then SMT(ARR2(TI , TE)) problem is decidable.

Proof. Let ψ be a conjunction of literals in the signature of ARR2(TI , TE). We

assume again that such literals are flat.

Let i = i1, . . . , in and e be the variables of sort INDEX and ELEM, respectively,

occurring in ψ and let a = a1, . . . , as be the tuple of function symbols of ψ.

By making case-splits, we can assume that ψ contain either i = j or i 6= j for

2.2 Satisfiability Modulo Theories 25

Property Formula

Being initialized to a value v ∀x.(0 ≤ x ∧ x < size)→ a[x] = v
Not containing an element v ∀x.(0 ≤ x ∧ x < size)→ a[x] 6= v
Being equal to an array b (with |b| = |a|) ∀x.(0 ≤ x ∧ x < size)→ a[x] = b[x]
Being sorted ∀x, y.(0 ≤ x ∧ x < y ∧ y < size)→ a[x] ≤ a[y]
Being reversed ∀x, y.(0 ≤ x ∧ x < size ∧ x+ y = size)→ a[x] = a[y]

Table 2.1. Some properties of interest for an array a of length size.

all distinct i, j ∈ i; in addition, in case i = j is a conjunct of ψ, we can freely

assume that ak(i) = ak(j) is in ψ for all ak ∈ a.

We can further separate the literals whose root predicate symbol has ar-

gument of sort INDEX from the literals whose root predicate has arguments of

sort ELEM, thus (from the way ARR2(TI , TE) is built) ψ can be rewritten as

ψI(i) ∧ ψE(a(i), e). (2.1)

Let d = d11, . . . , dsn be s× n fresh variables abstracting out the a(i): we claim

that ψ is ARR2(TI , TE)-satisfiable iff ψI is TI-satisfiable and ψE is TE-satisfiable.

In fact, given models of ψI and ψE in the respective theories, it is easy to build

a combined model for (2.1) by assigning to ak ∈ a any function whose value on

the element assigned to il is dkl (the definition is correct because ψ contains a

complete partition of the i and equalities have been propagated to ψE).

The idea underlying the proof of Lemma 2.2.2 is to reduce the ARR2(TI , TE)-

satisfiability check of quantifier-free formulæ to SMT (TI) and SMT (TE) prob-

lems by using a unidirectional variant of the Nelson-Oppen combination schema [Nel-

son and Oppen, 1979]. The particularity is that only disjunctions of equalities

between terms of sort INDEX are exchanged whereas those involving terms of

sort ELEM are not.

2.2.2 General undecidability results for arrays of integers

In our context, we will mainly work with programs handling arrays of inte-

gers. We will, therefore, fix our background theory to be either ARR1(LIA) or

ARR2(LIA,LIA). The fragment of formulæ one would like to handle in this

context is

∃c∀i ψ(c , i , a(t(i))) (2.2)

because in this fragment one can express interesting properties for such pro-

grams, e.g., those reported in Table 2.1.

26 Background

The fragment (2.2) does not admit, in general, a decision procedure. This

constitute a limiting result that might prevent the practical development of

tools able to solve the practical problem we target.

In the following paragraph we will prove this general negative result by

showing that one can encode into a formula like (2.2) the reachability problem

for 2-counters machines, also called two registers Minsky machines. Given that

the reachability problem for such machines is undecidable, the fragment we are

interested in cannot admit a decision procedure.

Minsky machines

Definition 2.2.2 (Two registers Minsky machine). A two registers Minsky

machine is a finite set P of instructions for manipulating configurations seen

as triples (q,m, n), where q ranges over a finite set of locations L = {l1, . . . , ln}
and m,n ∈ N.

The set I of instructions of a Minsky machines are the following:

• q → (r, 1, 0)

• q → (r, 0, 1)

• q → (r,−1, 0)[r′]

• q → (r, 0,−1)[r′]

These instructions modify the configuration of a Minsky machine. Let S be

the set of triples L× N× N and let

[[]]() : I × S → S

be the function defining the semantics of the four instructions in I. For any

τ ∈ I, q, q′ ∈ L and m,n,m′, n′ ∈ N, [[τ]](〈q,m, n〉) = 〈q′,m′, n′〉 is defined as

follows:

• if τ is “q → (r, 1, 0)”, then q′ = r,m′ = m+ 1, n′ = n;

• if τ is “q → (r, 0, 1)”, then q′ = r,m′ = m,n′ = n+ 1;

• if τ is “q → (r,−1, 0)[r′]” and m 6= 0, then q′ = r,m′ = m− 1, n′ = n;

• if τ is “q → (r,−1, 0)[r′]” and m = 0, then q′ = r′,m′ = m,n′ = n;

• if τ is “q → (r, 0,−1)[r′]” and n 6= 0, then q′ = r,m′ = m,n′ = n− 1;

2.2 Satisfiability Modulo Theories 27

• if τ is “q → (r, 0,−1)[r′]” and n = 0, then q′ = r′,m′ = m,n′ = n;

Definition 2.2.3 (n-steps reachability). Given a Minsky machine P and two

configurations 〈q,m, n〉 and 〈q′,m′, n′〉, 〈q′,m′, n′〉 is reachable by P from 〈q′,m′, n′〉
in n steps, in symbols,

〈q,m, n〉 →n
P 〈q′,m′, n′〉

iff it is possible to reach from 〈q,m, n〉 the configuration 〈q′,m′, n′〉 following

the rules of P for at most n steps.

Definition 2.2.4 (Reachability problem). Given a Minsky machine P and two

configurations 〈q,m, n〉 and 〈q′,m′, n′〉,

〈q,m, n〉 →∗P 〈q′,m′, n′〉

is called (second) reachability (configuration) problem and it holds iff it is

possible to reach from 〈q,m, n〉 the configuration 〈q′,m′, n′〉 following the rules

of P in any finite number of steps.

Theorem 2.2.1 ([Minsky, 1967]). The second reachability configuration prob-

lem for Minsky machines is undecidable.

Undecidability result

Let T be the theory of Linear Integer Arithmetic LIA enriched with three free

unary function symbols aq, am and an. Every Minsky machine P = (τ1, . . . , τr)

induces a formula FP(i, aq, am, an) of the kind

τ1(i, aq, am, an) ∨ · · · ∨ τr(i, aq, am, an)

where

• if τj is “q → (r, 1, 0)”, then

τj(i, aq, am, an) ≡ aq(i) = q∧aq(i+1) = r∧am(i+1) = am(i)+1∧an(i+1) = an(i)

• if τj is “q → (r, 0, 1)”, then

τj(i, aq, am, an) ≡ aq(i) = q∧aq(i+1) = r∧am(i+1) = am(i)∧an(i+1) = an(i)+1

28 Background

• if τj is “q → (r,−1, 0)[r′]” then

τj(i, aq, am, an) ≡ aq(i) = q ∧(
[am(i) 6= 0 ∧ aq(i+ 1) = r ∧ am(i+ 1) = am(i)− 1 ∧ an(i+ 1) = an(i)] ∨
[am(i) = 0 ∧ aq(i+ 1) = r′ ∧ am(i+ 1) = am(i) ∧ an(i+ 1) = an(i)]

)

• if τj is “q → (r, 0,−1)[r′]” then

τj(i, aq, am, an) ≡ aq(i) = q ∧(
[am(i) 6= 0 ∧ aq(i+ 1) = r ∧ am(i+ 1) = am(i) ∧ an(i+ 1) = an(i)− 1] ∨
[am(i) = 0 ∧ aq(i+ 1) = r′ ∧ am(i+ 1) = am(i) ∧ an(i+ 1) = an(i)]

)

Proposition 2.2.1. Let P be a Minsky machine and 〈q0,m0, n0〉, 〈qf ,mf , nf〉
two configurations. The formula

aq(0) = q0 ∧ am(0) = m0 ∧ an(0) = n0 ∧

∃z.

(
∀i.((0 < i ∧ i < z)→ FP(i, aq, am, an)) ∧
aq(z) = qf ∧ am(z) = mf ∧ an(z) = nf

)
(2.3)

is satisfiable iff 〈q0,m0, n0〉 →∗P 〈qf ,mf , nf〉.

Corollary 2.2.1. The satisfiability of the fragment (2.2) of ARR1(LIA) or

ARR2(LIA,LIA) is undecidable.

Notably, sub-fragments of (2.2) do admit a decision procedure. The de-

cidable fragment described in [Bradley et al., 2006] does not include the (2.3)

because of the a(i + 1) terms. (2.3) is also not included in the decidable frag-

ment presented in [Habermehl et al., 2008b] because of the disjunctions in

the FP(i, aq, am, an). In this thesis, we identify a third sub-fragment of (2.2)

for both the mono-sorted and the multi-sorted theories of arrays not included

with those presented in [Bradley et al., 2006, Habermehl et al., 2008b], called

Flat Array Properties, that admits a decision procedure. Chapter 6 presents it

and discusses in more details its comparison with the other known decidable

sub-fragments of (2.2).

2.2.3 Definable function and predicate symbols

In the thesis we will use definable function and predicate symbols.

2.3 Array-based transition systems and their safety 29

Definition 2.2.5 (Definable symbols). An n-ary predicate symbol P is defined

in a theory T by a formula φ(x) not containing it iff we have T |= P (x)↔ φ(x).

Similarly, an n-ary function symbol f is defined in a theory T by a formula

ψ(x, y) iff T |= f(x) = y ↔ ψ(x, y) and T |= ∀x ∃!y.φ(x, y) (∃!y stands for

‘there is a unique y such that ...’).

The addition of definable function and predicate symbols does not affect

decidability of quantifier-free formulæ and can be used for various purposes,

for instance in order to express directly array updates, case-defined functions,

etc. For instance, if a is a unary free function symbol, the term store(a, i, x)

(expressing the update of the array a at position i by over-writing x) is a

definable function; formally, we have x := i, x, j and φ(x, y) is given by (j =

i∧y = x)∨(j 6= i∧y = a(j)). This formula φ(j, y) (and similar ones) is usually

written as

y = (if j = i then x else a(j))

to improve readability. Another useful definable function is integer division by

a fixed natural number n: to show that integer division by n is definable, recall

that in LIA the formula ∀x ∃!y
∨n−1
r=0 (x = n ∗ y + r) is valid.

2.3 Array-based transition systems and their safety

In this section we introduce the notion of array-based transition system, the

formal model that we adopt to mathematically represent the computer system

under verification.

2.3.1 Array-based transition systems

We start by introducing the concept of guarded assignments in functional form,

class of relations that will be used to represent systems operations.

Definition 2.3.1 (Guarded assignments in functional form). Let T be a theory

of arrays, v = 〈a, s, pc〉 a tuple of symbols among which a is a tuple of free

function symbols of T and 〈s, pc〉 is a tuple of scalar variables, where pc is

a variable which sort is interpreted as a finite set of values {l1, . . . , ln}. A

guarded assignment in functional form is a formula of the form

τ(v,v′) := ∃k

(
pc = li ∧ pc′ = lj ∧ φL(k, a, s) ∧
a′ = λj. G(k, j, a, s) ∧ s = H(k, a, s)

)
(2.4)

30 Background

where G and H are tuples of case-defined functions of length |a| and |s|, re-

spectively.

Notice that the use of λ-abstractions in (2.4) does not go beyond first-order

logic, since a′ = λj. G(j, . . .) can be rewritten to the pure first-order formula

∀j. a′(j) = G(j, . . .). We will denote with the matrix of a guarded assignment

in functional form the formula (2.4) itself without the existential prefix ∃k; the

proper variables of τ are those in k.

Definition 2.3.2 (Array-based transition systems). Let T be a theory of ar-

rays. An array-based transition system (over T) is a tuple

ST = 〈v; linit; lerror;T 〉 (2.5)

where, alike has been stated in the definition 2.3.1, v = 〈a, s, pc〉: a, s are

the tuples of array variables and scalar variables, respectively, handled by the

program and pc is variable taking values over a finite set L = {l1, . . . , ln}. linit
and lerror are two elements of L identifying the ‘initial’ and the ‘error’ location

of the system. T is a finite set of guarded assignments in functional form

{τ1(v,v′), . . . , τr(v,v
′)}.

We assume the availability of two total functions src : T → L and trg :

T → L identifying the ‘source’ and ‘target’ location for each τ ∈ T . That is,

for each τ ∈ T , τ |= pc = src(τ) and τ |= pc′ = trg(τ). In addition, by a little

abuse of notation,

T (v,v′) :=
∨
τ∈T

τ(v,v′)

Finally, for all τ ∈ T, src(τ) 6= lerror and there exists at least one transition

τi ∈ T such that src(τi) = linit.

From programs to array-based transition systems

It is possible to associate an array-based transition system to the body of a

procedure written in an imperative language by means of standard syntactical

transformations. We illustrate the process on the procedure in Figure 2.1.

Let T be ARR2(TI , TE), where TI is the mono-sorted theory IDL of integer

difference logic (introduced in section 2.2.1) extended with a constant L. Let

INDEX be the unique sort symbol of TI . The theory TE is composed of three

mono-sorted theories: one is IDL with a sort symbol called ELEM, another is

the theory of the enumerated data-type of the Boolean values true and false,

and the third one is the theory of the enumerated data-type of the locations

2.3 Array-based transition systems and their safety 31

procedure Running() {
i = 0;

while (i < L) {
if (a[i] ≥ 0) b[i] = true;

else b[i] = false;

i = i+ 1;

}
f = true; i = 0;

while (i < L) {
if (a[i] ≥ 0 ∧ ¬b[i]) f = false;

if (a[i] < 0 ∧ b[i]) f = false;

i = i+ 1;

}
assert (f);

}

Figure 2.1. The procedure Running.

l0, l1, l2, l3, l4. Let BOOL and LOC be the sort symbols interpreted over the set

{true, false} and {l0, l1, l2, l3, l4}, respectively. The tuple a of array state vari-

ables contains the function symbols a and b, interpreted as two functions from

INDEX to ELEM and INDEX to BOOL, respectively. The tuple c of scalar variables

contains the variables i of sort INDEX, pc of sort LOC and f of sort BOOL.

The following transitions τ0, . . . , τ9 specify the instructions of the Running

procedure. For the sake of readability, mov(li, lj) stands for pc = li ∧ pc′ = lj
and id(t1, . . . , tn) for t1 = t′1 ∧ . . . ∧ tn = t′n.

τ0 := mov(l0, l1) ∧ i′ = 0 ∧ id(a, b, f)

τ1 := mov(l1, l1) ∧ i < L ∧ a[i] ≥ 0 ∧ i′ = i+ 1 ∧ b′ = store(b, i, true) ∧ id(a, f)

τ2 := mov(l1, l1) ∧ i < L ∧ a[i] < 0 ∧ i′ = i+ 1 ∧ b′ = store(b, i, false) ∧ id(a, f)

τ3 := mov(l1, l2) ∧ i ≥ L ∧ i′ = 0 ∧ f ′ = true ∧ id(a, b)

τ4 := mov(l2, l2) ∧ i < L ∧ a[i] < 0 ∧ b[i] ∧ f ′ = false ∧ i′ = i+ 1 ∧ id(a, b)

τ5 := mov(l2, l2) ∧ i < L ∧ a[i] ≥ 0 ∧ ¬b[i] ∧ f ′ = false ∧ i′ = i+ 1 ∧ id(a, b)

τ6 := mov(l2, l2) ∧ i < L ∧ a[i] ≥ 0 ∧ b[i] ∧ i′ = i+ 1 ∧ id(a, b, f)

32 Background

l0

l1

l2

l3

l4

i = 0

b[i] = true;
i = i+ 1;

b[i] = false;
i = i+ 1;

i = 0;
f = true;

f = false;
i = i+ 1;

i = i+ 1;

[>]

[>]

[i < L ∧ a[i] ≥ 0][i < L ∧ a[i] < 0]

[i ≥ L]

[>][>]

[>]

[
i < L ∧

(
(a[i] < 0 ∧ b[i]) ∨
(a[i] ≥ 0 ∧ ¬b[i])

)][
i < L ∧

(
(a[i] ≥ 0 ∧ b[i]) ∨
(a[i] < 0 ∧ ¬b[i])

)]

[>][>]

[i ≥ L]

[¬f]

Figure 2.2. The control-flow graph of the procedure Running.

τ7 := mov(l2, l2) ∧ i < L ∧ a[i] < 0 ∧ ¬b[i] ∧ i′ = i+ 1 ∧ id(a, b, f)

τ8 := mov(l2, l3) ∧ i ≥ L ∧ id(a, b, i, f)

τ9 := mov(l3, l4) ∧ ¬f ∧ id(a, b, i, f)

where, as stated in section 2.2.3, store(b, i, e) abbreviates the expression λj.if (j =

i) then e else b[j].

We are left to specify the initial linit and error lerror locations. For the

procedure Running in Figure 2.1, we define linit = l0 and lerror = l4.

2.4 Safety and invariants 33

2.4 Safety and invariants

In this thesis we consider only safety invariant properties: given an array-based

transition system ST , we are interested in checking whether its error location

is reachable. The notion of safe transition system is formalized as follows.

Definition 2.4.1 (Safety). A transition system ST = 〈v, linit, lerror, T 〉 is safe

iff the following formula

pc(n) = linit ∧
n∧
i=1

T (v(i),v(i−1)) ∧ pc(0) = lerror (2.6)

is T -unsatisfiable for every n ≥ 0.

In our framework, the verification of a safety property for an imperative

program P can be reduced to check the reachability of the error location lerror
by the array-based system ST associated to P . This amounts to establish if

(2.6) is T -satisfiable for some n ≥ 0. Assuming that the T -satisfiability of

formulæ of the form (2.6) is decidable, a possible way to solve the problem is

to enumerate the instances of (2.6) for increasing values of n. When the error

condition is reachable, the procedure terminates; otherwise, it diverges. It is in

this latter case that new solutions have to be found to limit these divergence

phenomena.

It is well-known (see, e.g., [Manna and Pnueli, 1995]) that one can show

that ST is safe by providing a safe inductive invariant for it. A safe inductive

invariant is, in our context, a formula H(v) representing (an overapproximation

of) the set of all possible configurations of ST such that H(v) ∧ pc = lerror is

not satisfiable. More formally,

Definition 2.4.2 (Invariants). A safe inductive invariant for ST is a formula

H(v) such that

(i) T |= ∀v.pc = linit → H(v)

(ii) T |= ∀v,v′.H(v) ∧ T (v,v′)→ H(v′)

(iii) T |= ∀v.H(v)→ pc 6= lerror

(2.7)

If H(v) satisfies only (i) and (ii), it is said to be an inductive invariant (but

not safe).

Example 2.4.1. Consider the procedure Running in Figure 2.1. The first loop

of the procedure initializes the array b according to the content of the array a

34 Background

such that, at the end of the loop, the following assertion holds:

for every index i in the range 0...L, b[i] = true iff a[i] ≥ 0. (2.8)

The second loop of the procedure sets the Boolean flag f to false if a position

in the array a contradicting (2.8) is found.

The program is clearly safe, i.e., the assertion after the second loop is satis-

fied for any execution of the procedure. To prove its safety, one has to provide

a safe inductive invariant. A formula achieving this goal is the following:

pc = l1 → (∀z0. ((0 ≤ z0 ∧ z0 < i)→ (a[z0] ≥ 0↔ b[z0])) ∧
pc = l1 → i ≥ 0

pc = l2 → (∀z0. ((0 ≤ z0 ∧ z0 < L)→ (a[z0] ≥ 0↔ b[z0])) ∧
pc = l2 → i ≥ 0

pc = l2 → f ∧
pc = l3 → f ∧
pc 6= l4

(2.9)

As we show in the next chapters, our approach can automatically generate the

above formula.

Chapter 3

Lazy Abstraction with Interpolants
for Arrays

This chapter presents an extension of the Lazy Abstraction with Interpolants

(lawi) [McMillan, 2006] framework suitable for the analysis of programs with

arrays. The lawi framework is one of the most efficient frameworks for the

analysis of programs. It is an instance of the more general CounterExample

Guided Abstraction Refinement (CEGAR) paradigm [Clarke et al., 2000]. The

idea underlying CEGAR is to iteratively refine abstractions of a system by

refuting abstract executions violating given properties that are not concretely

reproducible. This iterative process is performed with respect to set of predi-

cates P . This set is modified by exploiting Craig interpolants computed from

unsatisfiable formulæ retrieved from the abstract spurious counterexamples,

i.e., the abstract executions not representing any concrete undesired execution.

Verification tools based on the lawi schema have been successfully ap-

plied to certain classes of programs, e.g., device drivers [Ball and Rajamani,

2002]. However, the annotations of such programs involve only simple proper-

ties about the data-flow with a limited interplay with the control-flow. When

used to verify programs manipulating sophisticated data-structures such as ar-

rays, CEGAR and Lazy Abstraction show some limitations. One of the most

important reason for the the limited success of Lazy Abstraction on programs

manipulating arrays is the fact that program annotations often require (uni-

versal) quantification, as shown in section 2.4.

The new framework proposed in this chapter enhance the standard lawi

approach enabling its application to programs requiring quantified invariants

as follows. The solution presented in this chapter is developed in the Model

Checking Modulo Theory approach [Ghilardi and Ranise, 2010a,Ghilardi and

35

36 Lazy Abstraction with Interpolants for Arrays

Ranise, 2010b] in which verification is performed by a symbolic backward reach-

ability procedure. Certain classes of formulæ represent sets of backward reach-

able states and fix-point checks are reduced to logical problems that SMT

solvers are able to tackle, once extended with suitable quantifier instantiation

techniques. The mcmt approach has been successfully exploited for the verifi-

cation of parameterized (distributed) systems (see, e.g., [Ghilardi and Ranise,

2010a,Alberti et al., 2010a,Alberti et al., 2012d]) but it fails when applied to the

verification of imperative programs because of the lack of suitable abstraction-

refinement techniques. To overcome this problem, we extend the backward

reachability procedure of mcmt with a carefully designed interpolation-based

abstraction refinement technique capable to generate the quantified predicates

required for the synthesis of the inductive invariants, needed to establish the

safety of programs manipulating arrays. For this, we need to address the fol-

lowing technical challenges:

(i) Refinement must be able to deal with quantified formulæ, i.e. it is neces-

sary to discover new predicates possibly containing quantifiers. Indeed,

this is much more a difficult task than finding predicates that are equiva-

lent to quantifier-free formulæ as it is the case in many Lazy Abstraction

approaches focusing on scalar data structures (see, e.g., [Henzinger et al.,

2004]). To understand the problem, consider the procedure Running in

Figure 2.1 and recall that (2.8) is the invariant required for proving its

safety. Refinement should be able to generate it as a single predicate,

because of the universally quantified variable i; definitely a non-trivial

task.

(ii) Satisfiability of formulæ representing (abstract) counter-examples must

be decidable. This is key to be able to automatically detect when the

abstract program requires to be refined. Unfortunately, the situation is

complicated by the fact that interpolation-based refinement may intro-

duce extra quantifiers in the new predicates because, as we discussed in

section 2.2.1, the theory of arrays does not admit, in general, quantifier-

free interpolation. As a consequence, refinement needs to be carefully

controlled since the introduction of quantifiers may give rise to formulæ

containing alternations of quantifiers. This easily leads to the undecid-

ability of the satisfiability of the formulæ representing sets of backward

reachable states.

(iii) The implementation of interpolation-based refinement procedures is deli-

cate because the “quality” of the generated interpolants may generate too

37

many refinements, thereby degrading performances unacceptably, or even

worse making the procedure diverging. This is so because a pair (A,B)

of inconsistent formulæ may admit several (even infinitely many) inter-

polants and choosing the one that is “the best” with respect to refinement

is an undecidable problem. To illustrate the problem, consider again the

procedure Running in Figure 2.1. An interpolation-based refinement pro-

cedure may generate the sequence b[0]↔ a[0] ≥ 0, b[1]↔ a[1] ≥ 0, ... of

infinitely many (quantifier-free) predicates. After each iteration of refine-

ment, the conjunction of these predicates offers only an approximation of

the quantified assertion (2.8) needed to prove the safety of Running and

the Lazy Abstraction procedure diverges because of the infinite (increas-

ingly precise) sequence of approximations. Heuristics (see, e.g., [Jhala

and McMillan, 2006]) to tune the generation of interpolants and avoid

divergence are crucial for efficient implementations.

Our solution tackles the aforementioned challenges by exploiting the following

ideas. We will work with flattened formulæ, i.e., (recall Definitions2.2.1) for-

mulæ where array variables are dereferenced only by existentially quantified

variables. Thus, a formula of the kind φ(a[i], ...) (where i is a constant or

more generally a term) is first rewritten as ∃x (x = i ∧ φ(a[x], ...)). During

consistency tests, the existentially quantified variable x is Skolemized away,

so that consistency tests are made with quantifier-free formulæ. Interpolants

search is performed at quantifier-free level. If the interpolant abstracts away

the constant i from x = i ∧ φ(a[x], ...)1, when de-Skolemization reintroduces

the variable x, this x will be a genuine existentially quantified variable. In

fact, the negation of the resulting formula will be part of the universally quan-

tified invariant we are looking for (recall that backward search produces, when

successful, existentially quantified formulæ whose negations turn out to be in-

variants).

In summary, the contributions of this chapter are:

• a framework for abstraction-refinement with quantified predicates;

• a quantifier-free interpolation algorithm for a relevant class of formulæ

with array variables.

1The next chapter will describe practical heuristics for achieving this goal.

38 Lazy Abstraction with Interpolants for Arrays

3.1 Background

In the rest of the chapter we shall use the following notation an rely on the

following conventions.

We fix a background theory of arrays AEI , a multisorted theory with sort

symbols INDEX, ELEM` and ARRAY`, where ARRAY` is interpreted as the set of total

functions from the interpretation of INDEX to the interpretation of ELEM`. The

signature of AEI contains also the set of symbols { []`}, where []` : ARRAY` ×
INDEX → ELEM` are the usual dereference operations for arrays, interpreted

as function applications. The subscript ` will be omitted in the following for

simplifying the notation. We will target mainly the verification of programs

with arrays of integers. In this setting, TI will be generally identified as an

arithmetical theory, e.g., LIA. INDEX will be interpreted over N. TE will

be a combination of theories, typically an enumerated data-type theory used

to handle the control-flow of the program and an arithmetical theory (LIA
or IDL) for the content of the arrays. To keep the framework as general as

possible, we prefer not to fix them, though. The only requirements are the

decidability of the SMT (TI)- and SMT (TE)-problems and that TI and TE
have quantifier-free interpolation.

Furthermore, given an array-based transition system 〈v, linit, lerror, T 〉, we

partition the tuple of variables v as follows

- the tuple a = a0, . . . , as contains variables of sort ARRAY;

- the tuple c = c0, . . . , ct contains variables of sort INDEX (called, counters);

- the tuple d = d0, . . . , du contains variables of sort ELEM (called, simple vari-

ables). We assume d0 to be the program counter variable.

In light of the additional constraints we just specified, guarded assignment

in functional form becomes formulæ of the form

∃k

φL(k, a[k], c,d) ∧
a′ = λj. G(k, a[k], c,d, j, a[j]) ∧
c′ = H(k, a[k], c,d) ∧
d′ = K(k, a[k], c,d))

 (3.1)

where G = G0, . . . , Gs, H = H0, . . . , Ht, K = K0, . . . , Ku are tuples of case-

defined functions.

Example 3.1.1. Consider again the formalization of the Running procedure

given in section 2.3.1. The transitions τ1, τ2, τ4, τ5, τ6 and τ7 are not matching

3.2 Unwindings for the safety of array-based transition systems 39

formula (3.1) since terms of the form a[c] are not allowed. This is, however,

without loss of generality. In fact, any formula ψ(· · · a[c] · · ·) containing such

terms can be rewritten to ∃x(x = c ∧ ψ(· · · a[x] · · ·)) by using (fresh) existen-

tially quantified variables x of sort INDEX:

τ1 :=

(
mov(l1, l1) ∧ i < L ∧ ∃x.(x = i ∧ a[x] ≥ 0) ∧
i′ = i+ 1 ∧ b′ = store(b, i, true) ∧ id(a, f)

)

τ2 :=

(
mov(l1, l1) ∧ i < L ∧ ∃x.(x = i ∧ a[x] < 0) ∧
i′ = i+ 1 ∧ b′ = store(b, i, false) ∧ id(a, f)

)

τ4 :=

(
mov(l2, l2) ∧ i < L ∧ ∃x.(x = i ∧ b[x] ∧ a[x] < 0) ∧
f ′ = false ∧ i′ = i+ 1 ∧ id(a, b)

)

τ5 :=

(
mov(l2, l2) ∧ i < L ∧ ∃x.(x = i ∧ ¬b[x] ∧ a[x] ≥ 0) ∧
f ′ = false ∧ i′ = i+ 1 ∧ id(a, b)

)
τ6 := mov(l2, l2) ∧ i < L ∧ ∃x.(x = i ∧ a[x] ≥ 0 ∧ b[x]) ∧ i′ = i+ 1 ∧ id(a, b, f)

τ7 := mov(l2, l2) ∧ i < L ∧ ∃x.(x = i ∧ a[x] < 0 ∧ ¬b[x]) ∧ i′ = i+ 1 ∧ id(a, b, f) .

3.2 Unwindings for the safety of array-based tran-

sition systems

As introduced in section 2.4, näıve procedures for the establishment of the

safety of a transition system ST diverge if ST is safe. A standard solution

to avoid divergence is to compute the set of reachable states and check if a

fix-point has been reached. The set of forward or backward reachable states

is obtained by the repeated symbolic execution of transitions from the initial

or the error location, respectively. For example, the symbolic execution of a

transition τ from a set of states represented by a formula K(v) amounts to the

computation of the pre-image of K(v) with respect to τ(v,v′) as follows:

Pre(τ,K) ≡ ∃v′. (τ(v,v′) ∧K(v′)) . (3.2)

By taking the disjunction of the pre-images of pc = lerror with respect to all

transitions, it is possible to compute the set of states from which lerror is reach-

able by applying just one transition. The reachability of the error location can

be established with an iterative pre-image computation procedure, interleaved

with checks for detecting fix-points or the presence of the initial location in

the set of reachable states. Even when there is no sequence of transitions lead-

40 Lazy Abstraction with Interpolants for Arrays

ing the system from the initial to the error location, it is possible to stop the

procedure and conclude safety.

The problem with this procedure is that it is often impossible to compute

fix-points for infinite state systems such as those associated to many programs.

To alleviate this problem, an over-approximation of the set of reachable states

is computed. This set has to be sufficiently coarse to permit the detection of

a fix-point and sufficiently precise to show the safety of the analyzed system,

if the case. In program verification it is a common practice to compute an

over-approximation of the set of forward reachable states. In our case, given

the backward reachability procedure, we consider the computation of an over-

approximation of a backward reachable state-space. In this section, we show

how it is possible to over-approximate the set of backward reachable states of

an array-based system by using labeled unwindings [Henzinger et al., 2002].

3.2.1 Labeled unwindings for the safety of array-based sys-

tems

Preliminarily, we introduce some technical notions and notations. If ψ is a

quantifier-free formula in which at most the index variables in i occur, we

denote by ψ∃ its existential (index) closure, namely the formula ∃i ψ. In ad-

dition, a ∀I-formula is a formula of the kind ∀i.φ(i, a[i], c,d), an ∃I-formula

is a one of the form ∃i.φ(i, a[i], c,d) and ∃a∃c∃d∃i∀j.ψ(i, j, a[i], a[j], c,d) is a

∃A,I∀I-sentence.

Definition 3.2.1. A labeled unwinding of SAE
I

= 〈v; linit; lerror;T 〉 is a quadru-

ple (V,E,MV ,ME), where (V,E) is a finite rooted tree (let ε be the root) and

MV ,ME are labeling functions for vertices and edges, respectively, such that:

(i) for every v ∈ V , if v = ε, then MV (ε) is pc = lerror; otherwise (i.e.

v 6= ε), MV (v) is a quantifier-free formula of the kind ψ(i, a[i], c,d) such

that MV (v) |=AE
I
pc = l for some location l;

(ii) for every (v, w) ∈ E, ME(v, w) is the matrix of some τ ∈ T ; the proper

variables of τ do not occur in MV (w); moreover, we have that MV (w) |=AE
I

pc = trg(τ), that MV (v) |=AE
I
pc = src(τ), and that

ME(v, w)(v,v′) ∧MV (w)(v′) |=AE
I
MV (v)(v); (3.3)

(iii) for each τ ∈ {τh(v,v′)}h and every non-leaf vertex w ∈ V such that

MV (w) |=AE
I
pc = trg(τ), there exist v ∈ V and (v, w) ∈ E such that

ME(v, w) is the matrix of τ .

3.2 Unwindings for the safety of array-based transition systems 41

The intuition underlying this definition is that a vertex v in a labeled un-

winding corresponds to a program location (i) and an edge (v, w) to the exe-

cution of a transition, whose source and target locations match with those of

v and w, respectively (ii) and (iii). A closer look at condition (3.3) allows us

to show how the set of backward reachable states obtained by repeatedly com-

puting pre-images (3.2) can be over-approximated by the the formulæ attached

to the vertices of a labeled unwinding. For this, we show that MV (v)∃, i.e. the

set of states associated to vertex v, overapproximates the set of states in the

pre-image of MV (w)∃ with respect to a transition τ .

Lemma 3.2.1. Let (u,w) ∈ E be an arc in a labeled unwinding (V,E,ME,MV);

we have

Pre(τ,MV (w)∃) |=AE
I
MV (v)∃

where τ is the guarded assignment in functional form whose matrix is ME(v, w).

Proof. If we introduce existential quantifiers in both members of (3.3), we get

∃v′(ME(v, w)(v,v′) ∧MV (w)(v′))∃ |=AE
I
MV (v)(v)∃;

taking into consideration that the proper variables of τ are the only index

variables occurring free in the matrix of τ and that such proper variables do

not occur in MV (w), we can move inside index quantifiers and get

∃v′(ME(v, w)(v,v′)∃ ∧MV (w)(v′)∃) |=AE
I
MV (v)(v)∃;

which is the claim because ME(v, w)(v,v′)∃ is τ(v,v′).

From this, it is clear that the disjunction of the existential index closure

of the formulæ labeling the vertices of an unwinding is an over-approximation of

the set of backward reachable states. As discussed above, the over-approximation

is useful only when it allows us to prove safety when this is the case, i.e. when

the approximation is not too coarse. This is equivalent to saying that the

negation of the formula representing the over-approximated set of (backward)

reachable states is an invariant of the system. We now characterize the condi-

tions (see Definition 3.2.2 below) under which this is possible.

A set C of vertexes in a labeled unwinding (V,E,MV ,ME) covers a vertex

v ∈ V iff

MV (v)∃ |=AE
I

∨
w∈C

MV (w)∃. (3.4)

42 Lazy Abstraction with Interpolants for Arrays

Definition 3.2.2. The labeled unwinding (V,E,MV ,ME) is safe iff for all

v ∈ V we have that if MV (v) |= pc = linit, then MV (v) is AEI -unsatisfiable. It is

complete iff there exists a covering, i.e., a set of non-leaf vertexes C containing

ε and such that for every v ∈ C and (v′, v) ∈ E, it happens that C covers v′.

The reader familiar with [McMillan, 2006] may have noticed that our notion

of covering involves a set of vertexes rather than a single one as in [McMillan,

2006]. Indeed, an efficient implementation of our notion is crucial for efficiency

and is discussed in chapter 4. Here, we focus on abstract definitions which

allow us to prove that safe and complete labeled unwindings can be seen as

safety certificates for array-based systems.

Theorem 3.2.1. If there exists a safe and complete labeled unwinding of SAE
I

=

〈v; linit; lerror;T 〉, then S is safe.

Proof. Let (V,E,MV ,ME) be a safe and complete labeled unwinding of S with

covering C. We show that
∨
w∈CMV (w)∃, which is a disjunction of ∃I-formulæ

having the variables in v = a, c,d as free variables, overapproximates the set

of the system states that can reach the error location. More formally, we show

that for every n the formula

T (v(n),v(n−1)) ∧ · · · ∧ T (v(1),v(0)) ∧ pc(0) = lerror

AEI -entails the formula
∨
w∈CMV (w)∃(v(n)). This implies also that the for-

mula (2.6) cannot be satisfiable, because (V,E,MV ,ME) is safe. Indeed,

if (2.6) is satisfiable and the claim holds, this means that pc(n) = linit ∧∨
w∈CMV (w)∃(v(n)) is satisfiable, which can only be if some of the MV (w)

is consistent and AEI -entails pc = linit, i.e. if (V,E,MV ,ME) is unsafe.

The proof of the statement is by induction on n. The case n = 0 is trivial

because ε ∈ C is labeled pc = lerror; so suppose n > 0. By induction hypothesis,

we need to show that∨
h

τh(v
(n),v(n−1)) ∧

∨
w∈C

MV (w)∃(v(n−1)) |=AE
I

∨
w∈C

MV (w)∃(v(n))

i.e. that for each τ ∈ {τh}h and v ∈ C we have

τ(v(n),v(n−1)) ∧MV (v)∃(v(n−1)) |=AE
I

∨
w∈C

MV (w)∃(v(n)).

By the definition of a labeled unwinding, either there is a location mismatch

and τ(v(n),v(n−1)) ∧ MV (v)∃(v(n−1)) is inconsistent, or according to Defini-

3.2 Unwindings for the safety of array-based transition systems 43

ε pc = l4

v1 pc = l3 ∧ ¬f

v2 pc = l2 ∧ ¬f

v3pc = l2 ∧ ¬b[z0] ∧ a[z0] ≥ 0 ∧ L > z0 v4 pc = l2 ∧ b[z0] ∧ a[z0] < 0 ∧ L > z0

v7pc = l1 ∧ ¬b[z0] ∧ a[z0] ≥ 0 ∧ i > z0 v13 pc = l1 ∧ b[z0] ∧ a[z0] < 0 ∧ i > z0

τ9

τ8

τ4 τ5

τ3 τ3

Figure 3.1. Covering associated with a labeled unwinding proving the safety of the
Running procedure (the entire labeled unwinding has 77 vertices and 188 edges).
The variable z0 has sort INDEX and is introduced during backward reachability.

tion 3.2.1(iii) there must be a vertex v′ with an edge (v′, v) labeled by the

matrix of τ in the tree (V,E) (this is because coverings do not contain leaves,

hence v is not a leaf). We can now derive our claim from the definition of

a covering and the fact that τ(v(n),v(n−1)) ∧ MV (v)∃(v(n−1)) AEI -entails the

formula MV (v′)∃(v(n)) by Lemma 3.2.1.

As a final remark, we point out that safe and complete labeled unwindings

are quantified safety certificates for array-based systems. To see why, consider

the covering C associated with a safe and complete labeled unwinding. Then,

a safe inductive invariant for the array based transition system is represented

by the formula ∧
w∈C

¬
(
MV (w)∃(v)

)
. (3.5)

Example 3.2.1. Consider again the transition system representing the Run-

ning procedure. Our framework can generate a safe and complete labeled un-

winding for such transition system. The covering associated with this labeled

unwinding is depicted in Figure 3.1, and represents the following invariant:

pc = l1 → (∀z0. ((0 ≤ z0 ∧ z0 < i)→ (a[z0] ≥ 0↔ b[z0])) ∧
pc = l2 → (∀z0. ((0 ≤ z0 ∧ z0 < L)→ (a[z0] ≥ 0↔ b[z0])) ∧
pc = l2 → f ∧
pc = l3 → f ∧
pc 6= l4

If compared with the invariant given in section (2.4), i.e., the formula (2.9),

44 Lazy Abstraction with Interpolants for Arrays

the invariant reported here is missing two conjuncts, i.e., pc = l1 → i ≥ 0 and

pc = l2 → i ≥ 0. This is because here we assume that INDEX is interpreted over

N. Notably, the framework we will describe in chapter 8 is able to generate

automatically these two invariants by means of an abstract interpreter based

on the polyhedra abstract domain.

3.2.2 On checking the safety and completeness of labeled

unwindings

Theorem 3.2.1 states that the safety of an array-based system can be estab-

lished by checking if there exists a labeled unwinding that is safe and complete.

A procedure for searching such an unwinding will be described in the next sec-

tion. For the moment, assume that a candidate labeled unwinding has been

found and consider the problem to check if it is safe and complete.

It is easy to see that the safety check can be reduced to the AEI -satisfiability

of a quantifier-free formula. In fact, the formula MV (v) associated to a vertex

v in a labeled unwinding is quantifier-free by Definition 3.2.1.(i). Accord-

ing to Definition 3.2.2, testing safety amounts to checking unsatisfiability of

quantifier-free formulæ. This problem is decidable, as proven by Lemma 2.2.2,

provided that both the SMT (TI) and SMT (TE) problems are decidable; recall

that this has been assumed in section 3.1.

Checking the completeness of a labeled unwinding is more involved. Accord-

ing to Definition 3.2.2, this requires to guess a sub-set C of the set of vertexes

in the unwinding and check if C covers v′, for every v ∈ C and (v′, v) ∈ E.

In turn, by refutation from (3.4), this may be reduced to repeatedly check the

AEI -unsatisfiability of ∃A,I∀I-sentences, i.e. formulæ of the form

∃a ∃c∃d ∃i ∀j. ψ(i, j, a[i], a[j], c,d) , (3.6)

where i, j, c are of sort INDEX, a are of sort ARRAY and d of sort ELEM. Unfortu-

nately, the AEI -satisfiability of these sentences is (in general) undecidable [Ghi-

lardi and Ranise, 2010a]. The problem is the handling of the universally quan-

tified variables of j that occur in (3.6) since all the other existentially quantified

variables in a, c, d, and i can be regarded as Skolem constants. To alleviate

the problem, an idea is to design an incomplete instantiation procedure for

the variables in j to obtain a conjunction of quantifier-free formulæ whose AEI -

satisfiability is decidable by Lemma 2.2.2. Our default instantiation procedure

computes the set Σ of all possible substitutions mapping the variables in j

into i ∪ c. Our default satisfiability procedure uses the default instantiation

3.3 Lazy abstraction with interpolation-based refinement for arrays 45

procedure to check the AEI -unsatisfiability of the formula∧
σ∈Σ

ψ(i, jσ, a[i], a[j], c,d) . (3.7)

It returns the AEI -unsatisfiability of (3.6) when (3.7) is so and returns “un-

known” when (3.7) is AEI -satisfiable.

In other words, the default satisfiability procedure is sound but incomplete

for checking the AEI -satisfiability of ∃A,I∀I-sentences. In section 3.4, we show

that the adoption of such a procedure allows us to use labeled unwindings as

safety certificates. To clarify that the notion of completeness for labeled un-

windings is relative to the incomplete algorithm used to check the completeness

of coverings, we introduce the following notion.

Definition 3.2.3. The labeled unwinding (V,E,MV ,ME) is recognized to be

complete iff there exists a set of non-leaf vertexes C (called a ‘recognized cov-

ering’ or simply a ‘covering’ for the sake of simplicity) containing ε and such

that for every v ∈ C and (v′, v) ∈ E, it happens that the relation (3.4) is ver-

ified to hold by using the default satisfiability procedure for AEI -satisfiability of

∃A,I∀I-sentences.

In section 3.4, we will identify sufficient conditions under which the de-

fault instantiation procedure allows us to build a decision procedure for the

AEI -satisfiability problem of ∃A,I∀I-sentences. We will also see that the same

conditions guarantee the termination of the procedure described in the next

section that finds a safe and complete labeled unwinding.

In chapter 4, we will describe heuristics to reduce the number of possi-

ble instances that must be considered by the default instantiation procedure

to improve performance. The experiments described in section 4.2 show the

efficiency of the default satisfiability procedure described above.

3.3 Lazy abstraction with interpolation-based re-

finement for arrays

We now describe how to construct labeled unwindings and how this process

is interleaved with the checks for safety and completeness described in sec-

tion 3.2.2. Similarly to [McMillan, 2006], we design a (possibly non-terminating)

procedure Unwind, that – given an array-based system SAE
I

– computes a

sequence of (increasingly larger) labeled unwindings. The initial labeled un-

winding of SAE
I

is the tree containing just the root labeled by pc = lerror.

46 Lazy Abstraction with Interpolants for Arrays

Unwind uses two sub-procedures: Expand builds the labeled unwinding and

Refine refines labeled unwindings by eliminating spurious unsafe traces via

interpolants. When Refine is applicable but fails, SAE
I

is unsafe. If none

of the two procedures applies, then the current labeled unwinding is safe and

complete: SAE
I

is safe by Theorem 3.2.1.

As we will see below, a crucial advantage of our approach is that Refine

needs to compute only quantifier-free interpolants (in a restricted form) to re-

fine spurious unsafe traces, despite the fact that quantified formulæ are used to

represent sets of states and transitions. Technically, this is possible because for-

mulæ describing potentially unsafe traces can be transformed to equisatisfiable

quantifier-free formulæ by a partial instantiation procedure (see section 3.3.2

below for details).

In the following, we give a non-deterministic version of Unwind: the two

procedures Expand and Unwind can be non-deterministically applied to a

labeled unwinding to obtain a new one, whenever this is possible according to

their applicability conditions (described below). The implementation strategies

of Unwind will be described in section 4.1.

3.3.1 The two sub-procedures of Unwind

Let (V,E,MV ,ME) be the current labeled unwinding of SAE
I

. From now on,

we assume that the initial location is not a target location, the error location is

not a source location, and that initial and error locations are the only locations

that are not both a source and a target location.

Expand. The applicability condition is that (V,E,MV ,ME) is not recognized

to be complete (recall Definition 3.2.3) and there exists a leaf vertex v

whose location is such that MV (v) 6|=AE
I
pc = linit.

The effects of applying this procedure are the following: for each tran-

sition τ ∈ T whose target is l, a new leaf wτ , labeled by pc = src(τ),

is added together with a new edge (wτ , v), labeled by τ , to the current

unwinding.

Refine. The applicability condition is that (V,E,MV ,ME) is not recognized

to be complete (recall Definition 3.2.3) and there exists a vertex v ∈ V
whose location is linit and it is such that MV (v) is AEI -satisfiable.

In the current labeled unwinding, consider the path v = v0 → v1 →
· · · → vm = ε from v to the root and let τ1, . . . , τm be the transitions

3.3 Lazy abstraction with interpolation-based refinement for arrays 47

labeling the edges from left to right; the set of these transitions is called

a counterexample. If

τ1(v(0),v(1)) ∧ · · · ∧ τm(v(m−1),v(m)) (3.8)

is AEI -satisfiable then the counterexample is said to be feasible, the pro-

cedure fails, and reports the unsafety of SAE
I

. Otherwise, the counterex-

ample is said to be infeasible and the effect of applying the procedure

is to strengthen the labels of the counterexample vertices by using the

interpolants retrieved from the unsatisfiability of (3.8).

The mechanization of the applicability conditions for both sub-procedures have

been discussed in section 3.2.2. This means that enough details for the mech-

anization of Expand are already available. This is not the case for Re-

fine because it is unclear how to check the AEI -satisfiability of formulæ of

the form (3.8)—this is crucial to establish the feasibility or infeasibility of a

counterexample—and we do not know how to compute interpolants and how

to use them in order to “strengthen the labels in the counterexample.”

The feasibility of counterexamples is discussed in section 3.3.2, the compu-

tation of (quantifier-free) interpolants in section 3.3.4, and their use in refining

(infeasible) counterexamples in section 3.3.3.

3.3.2 Checking the feasibility of counterexamples

We describe a decision procedure for checking the AEI -satisfiability of formulæ

of the form (3.8), thereby enabling to check the feasibility of counterexam-

ples in Refine. The idea underlying the procedure is to instantiate the vari-

ables bound by the λ-abstraction in the updates of the transitions occurring

in (3.8) with finitely many constants and then check the resulting quantifier-

free formula for AEI -satisfiability. The fact that only finitely many instances

are sufficient is shown by the following observations.

By recalling (3.1), rewrite (3.8) to

m∧
k=1

∃ik

φk(ik, a

(k−1)[ik], c
(k−1),d(k−1)) ∧

a(k) = λj. Gk(ik, a
(k−1)[ik], c

(k−1),d(k−1), j, a(k−1)[j]) ∧
c(k) = Hk(ik, a

(k−1)[ik], c
(k−1),d(k−1)) ∧

d(k) = Kk(ik, a
(k−1)[ik], c

(k−1),d(k−1))

 (3.9)

which, by Skolemizing existentially quantified variables, can be further rewrit-

48 Lazy Abstraction with Interpolants for Arrays

ten to the equi-satisfiable formula (here and in the following, by abuse of no-

tation, we consider the variables in ik as Skolem constants):

m∧
k=1

φk(ik, a

(k−1)[ik], c
(k−1),d(k−1)) ∧

a(k) = λj. Gk(ik, a
(k−1)[ik], c

(k−1),d(k−1), j, a(k−1)[j]) ∧
c(k) = Hk(ik, a

(k−1)[ik], c
(k−1),d(k−1)) ∧

d(k) = Kk(ik, a
(k−1)[ik], c

(k−1),d(k−1))

 . (3.10)

Now, observe that a(k) = λj Gk(. . .) is equivalent to ∀j. a(k)[j] = Gk(. . . j . . .)

and instantiate the variable j with the Skolem constants in ik+1, ..., im to derive

m∧
k=1

φk(ik, a

(k−1)[ik], c
(k−1),d(k−1)) ∧∧

j∈ik+1,...,im

a(k)[j] = Gk(ik, a
(k−1)[ik], c

(k−1),d(k−1), j, a(k−1)[j]) ∧

c(k) = Hk(ik, a
(k−1)[ik], c

(k−1),d(k−1)) ∧
d(k) = Kk(ik, a

(k−1)[ik], c
(k−1),d(k−1))

 (3.11)

Lemma 3.3.1. Formulæ (3.10) and (3.11) are AEI -equisatisfiable.

Proof. Indeed, (3.10) AEI -entails (3.11). Vice-versa, suppose we are given an

AEI -model M and a satisfying assignment s for (3.11), our goal is to produce

a satisfying assignment s̃ for (3.10) based on the same AEI -model M. For

simplicity, let us call i1, . . . , im,v
(0), . . . ,v(m) the elements from the support

of M assigned by s to the variables i1, . . . , im,v
(0), . . . ,v(m) occurring free

in (3.10) and (3.11). The assignment s̃ will change only the values assigned to

v(1), . . . ,v(m) (notice that v(0) is left unchanged). We define s̃(vk) for k > 0

inductively as follows:

s̃(a(k)) = λj Gk(ik, s̃(a(k−1))[ik], c
(k−1),d(k−1), j, s̃(a(k−1))[j])

s̃(c(k)) = Hk(ik, s̃(a(k−1))[ik], c
(k−1),d(k−1))

s̃(d(k)) = Kk(ik, s̃(a(k−1))[ik], c
(k−1),d(k−1))

To show that (3.10) holds under s̃, a simple induction on k (= 1, . . . ,m) is

sufficient to check that s̃(c(k−1)) = c(k−1), s̃(d(k−1)) = d(k−1) and s̃(a(k−1))[j] =

a(k−1)[j] for all j ∈ ik∪· · ·∪ im. As a consequence of this, the formulæ φk’s still

hold under s̃ and the remaining conjuncts of (3.10) hold by construction.

An easy corollary of Lemmas 3.3.1 and 2.2.2 is the following result.

3.3 Lazy abstraction with interpolation-based refinement for arrays 49

Lemma 3.3.2. The AEI -satisfiability of formulæ of the form (3.8) is decidable.

This means that we can check the feasibility of counterexamples under the

assumption that the SMT problems of the theory TI over indexes and the

theory TE over elements are decidable (recall that this has been assumed in

section 3.1). A by-product of this result is the decidability of the bounded

model checking problem (formally defined below) for array-based systems.

Let SAE
I

= 〈v; linit; lerror;T 〉 and recall the formula (2.6), i.e.

pc(n) = linit ∧
n∧
i=1

T (v(i),v(i−1)) ∧ pc(0) = lerror (2.6)

When n ≥ 0 is known, we say that the bounded model checking problem for

SAE
I

consists of checking the AEI -satisfiability of the formula above for the

given value of n. We now show that Lemmas 3.3.1 and 2.2.2 also imply the

decidability of this problem.

First of all, observe that, by applying standard distributive laws2 and re-

naming of variables (the variable v(k) is renamed to v(n−k), so v(n) is renamed

to v(0), v(n−1) to v(1), ..., v(1) to v(n−1), and v(0) to v(n)), the formula above

can be rewritten to a disjunction of formulæ of the form

pc(0) = linit ∧ τh1(v(0),v(1)) ∧ · · · ∧ τhn(v(n−1),v(n)) ∧ pc(n) = lerror , (3.12)

where hj ranges over the same set of indexes of the transitions in SAE
I

and

j = 1, ..., n. Now, observe that τh1(v
(0),v(1))∧· · ·∧τhn(v(n−1),v(n)) has the same

form of (3.8) and, by Lemma 3.3.1, it is AEI -equisatisfiable to a quantifier-free

formula φ of the form (3.11). The decidability of (2.6) is now obvious because

every transition formula τh(v,v
′) entails pc = src(τh)∧pc′ = trg(τh) (recall the

definition of a guarded assignment in functional form from section 2.3) and,

“modulo” AEI formulæ of the form l1 = l2, are unsatisfiable when locations l1
and l2 are distinct. Thus (3.12) is either trivially unsatisfiable (in case of the

locations are different) or equisatisfiable to φ. From this observation follows

the following result.

Theorem 3.3.1. The bounded model checking problem for array-based systems

is decidable.

2Recall that we assumed T (v,v) ≡
∨
τ∈T τ(v,v′).

50 Lazy Abstraction with Interpolants for Arrays

3.3.3 Refining counterexamples with interpolants

Assume that Refine has detected that the infeasibility of the counterexample

associated with the path v0
τ1→ v1

τ2→ · · · τm→ vm = ε as shown in section 3.3.2,

i.e. by the checking the AEI -unsatisfiability of the formula τ1 ∧ · · · ∧ τm of

the form (3.8). At this point, Refine needs to refine the counterexample.

Following [McMillan, 2006], this is done by computing path interpolants that

are conjoined to the labels of the vertices of the path under consideration to

strengthen them. This is detailed in the following by assuming the availability

of a procedure capable to compute interpolants for quantifier-free formulæ (the

description of such a procedure is postponed to section 3.3.4).
Let us consider anAEI -unsatisfiable formula of the form (3.8). By Lemma 3.3.1,

this formula is AEI -equisatisfiable to a quantifier-free formula of the form (3.11).
This implies that also (3.11) is AEI -unsatisfiable. Let us abbreviate the k-th
conjunct in (3.11) as

τ̃k(ik, . . . , im,a
(k−1)[ik], . . . ,a

(k−1)[im],a(k)[ik+1], . . . ,a(k)[im], tc(k−1), c(k),d(k−1),d(k)) .

(3.13)

Thus, (3.11) can be written as τ̃1 ∧ · · · ∧ τ̃m. Now, let

ψk(ik+1, . . . , im, a[ik+1], . . . , a[im], c,d) (3.14)

be one of the quantifier-free interpolants (for k = 1, ...,m)—computed by re-

peatedly invoking the available interpolation procedure on the AEI -unsatisfiable

formula (3.11) from right-to-left. The ψk’s are such that

ψ0 ≡ ⊥ (3.15)

ψk(ik+1, . . . , im, a
(k)[ik+1], . . . , a(k)[im], c(k),d(k)) ∧ τ̃k |=AE

I

ψk−1(ik, . . . , im, a
(k−1)[ik], . . . , a

(k−1)[im], c(k−1),d(k−1))
(3.16)

ψm ≡ > (3.17)

Once these interpolants are computed, Refine updates the label of vk, for

k = 0, . . . ,m− 1, in the path v0
τ1→ v1

τ2→ · · · τm→ vm = ε as follows:

MV (vk) := MV (vk) ∧ ψk(ik+1, . . . , im, a[ik], . . . , a[im], c,d). (3.18)

Since the matrix of τk AEI -entails τ̃k, condition (3.3) of Definition 3.2.1.(ii)

of labeled unwinding (see section 3.2.1) is preserved and the vertex v0 is now

labeled by an AEI -unsatisfiable formula.

Example 3.3.1. Consider again the procedure Running in Figure 2.1, and

3.3 Lazy abstraction with interpolation-based refinement for arrays 51

εpc = l4

v1pc = l3 ∧ ¬f

v2pc = l2 ∧ ¬f

v3 pc = l2 ∧ i < L ∧ z0 = i ∧ a[z0] ≥ 0

v7 pc = l1 ∧ a[z0] ≥ 0

v15 pc = l1

v34 pc = l0

τ9

τ8

τ4

τ3

τ1

τ0

Figure 3.2. A candidate counterexample generated by the Expand procedure.

suppose that Expand produced a labeled unwinding containing the path de-
picted in Figure 3.2. This path triggers the execution of Refine. This proce-
dure checks whether the formula associated with this counterexample is AEI -
satisfiable exploiting the decision procedure described in section 3.3.2. The
quantifier-free formula resulting after the selective instantiation is shown be-
low:3

mov(l0, l1, 1) ∧ i(1) = 0 ∧ id(f, a[z0], b[z0], 1)

mov(l1, l1, 2) ∧ i(2) = i(1) + 1 ∧ z0 = i(1) ∧ 0 ≤ a(1)[z0] ∧ b(2)[z0] ∧ i(1) < L ∧ id(f, a[z0], 2)

mov(l1, l2, 3) ∧ i(2) ≥ L ∧ i(3) = 0 ∧ f (3) ∧ id(a[z0], b[z0], 3)

mov(l2, l2, 4) ∧ 0 ≤ a(3)[z0] ∧ ¬b(3)[z0] ∧ i(3) < L ∧ z0 = i(3) ∧ i(4) = i(3) + 1 ∧ ¬f (4)

mov(l2, l3, 5) ∧ i(4) ≥ L ∧ id(f, i, 5)

mov(l3, l4, 6) ∧ ¬f (5) ∧ id(f, i, 6)

This formula is AEI -unsatisfiable. Refine computes, therefore, a set of in-

terpolants. For this counterexample, the computed interpolants are ψ0 :=

⊥, ψ1 := ⊥, ψ2 := ¬b[z0], ψ3 := ¬b[z0], ψ4 := >, ψ5 := >, ψ6 := >. These

formulæ are conjoined to the labels of the corresponding vertices in the path

shown in in Figure 3.2 that is refined to the one depicted in Figure 3.3.

3For the sake of readability, mov(li, lj , k) stands for pc(k−1) = li ∧ pc(k) = lj and

id(t1, . . . , tn; k) for t
(k)
1 = t

(k−1)
1 ∧ . . . ∧ t(k)n = t

(k−1)
n . The Skolem variables introduced

by Refine are denoted by zj for j ≥ 0.

52 Lazy Abstraction with Interpolants for Arrays

εpc = l4

v1pc = l3 ∧ ¬f

v2pc = l2 ∧ ¬f

v3 pc = l2 ∧ i < L ∧ z0 = i ∧ a[z0] ≥ 0 ∧ ¬b[z0]

v7 pc = l1 ∧ a[z0] ≥ 0 ∧ ¬b[z0]

v15 ⊥

v34 ⊥

τ9

τ8

τ4

τ3

τ1

τ0

Figure 3.3. Path obtained by refining the counterexample in Figure 3.2.

3.3.4 An interpolation procedure for quantifier-free formulæ

We now describe the interpolation procedure for quantifier-free formulæ used to

compute path-interpolants for refining infeasible counterexamples (as described

in section 3.3.3).

First of all, recall that we assumed that quantifier-free interpolants can be

computed for both TI and TE in section 3.1. Unfortunately, this is not suf-

ficient to guarantee the possibility to compute quantifier-free interpolants for

quantifier-free formulæ in AEI . In fact, this theory can be seen as a combi-

nation of TI and TE with (uninterpreted) function symbols by considering ar-

rays as function symbols and the dereference operation as function application.

Negative results (such as [Brillout et al., 2010,Bruttomesso et al., 2012a]) are

available in the literature showing that the addition of (uninterpreted) function

symbols to theories allowing for the computation of quantifier-free interpolants

prevents the existence of quantifier-free interpolants in the extended theory.

Fortunately, the AEI -unsatisfiable formulæ of the form ψ1 ∧ ψ2 for which an

interpolant must be computed when invoking the procedure Refine are such

that ψ1 and ψ2 satisfy certain conditions on their shape that guarantee the

possibility to compute quantifier-free interpolants as stated in the following

result.

Theorem 3.3.2. Suppose that ψ1 ∧ ψ2 is an AEI -unsatisfiable quantifier-free

formula such that all terms of sort INDEX occurring in ψ2 under the scope of the

dereference operation [] occur also in ψ1. Then, there exists a quantifier-free

formula ψ0 such that: (i) ψ2 |=AE
I
ψ0; (ii) ψ0∧ψ1 is AEI -unsatisfiable; and (iii)

all free variables occurring in ψ0 occur both in ψ1 and ψ2.

Proof. Let us call critical the index variables occurring both in ψ1 and ψ2 (by

assumptions, the index variables occurring in ψ2 under the scope of the deref-

3.3 Lazy abstraction with interpolation-based refinement for arrays 53

erence operator [] are critical). Without loss of generality, we may assume

that ψ1 and ψ2 are conjunctions of dereference flat literals4 and that for all

distinct variables i, j occurring in ψ1, we have that ψ1 contains either the lit-

eral i = j or the literal i 6= j. These assumptions can be justified by standard

considerations. For instance, once interpolants for ψ′1 ∧ ψ2 and for ψ′′1 ∧ ψ2 are

known, one can combine them to an interpolant for (ψ′1 ∨ ψ′′1) ∧ ψ2 by taking

disjunction5. We can also assume that, whenever ψ1 contains i = j, then it

contains also a[i] = a[j] for every array variable occurring in ψ1; finally, if i, j

are critical variables and i = j is a conjunct of ψ1, then we assume that ψ2

contains a[i] = a[j] for every array variable a occurring in ψ2. In fact, if adding

i = j ∧ a[i] = a[j] to ψ2 one gets the interpolant ψ0, it is possible to get the

interpolant back from ψ2 by taking i = j → ψ0.

Let now ψ1 be of the kind

ψ1(i1, i0, a1[i1], a1[i0], a0[i1], a0[i0], e1, e0)

and ψ2 be of the kind

ψ2(i0, i2, a2[i0], a0[i0], e2, e0),

where a1, a0, a2 are array variables, e0, e1, e2 are element variables, and i0, i1, i2
are index variables (the i0 are the critical ones - notice that terms a0[i2], a2[i2]

do not occur in ψ2). We can further separate the literals whose root predicate

symbol has argument of sort INDEX from the literals whose root predicate has

arguments of sort ELEM, thus ψ1 can be rewritten as

ψI1(i1, i0) ∧ ψE1 (a1[i1], a1[i0], a0[i1], a0[i0], e1, e0)

whereas ψ2 as

ψI2(i0, i2) ∧ ψE2 (a2[i0], a0[i0], e2, e0)

for ψIg and ψEg conjunctions of literals whose root predicate symbols have ar-

gument of sort INDEX and ELEM, respectively, and g = 1, 2.

Now, since a complete partition on indexes i0, i1 is included in ψ1
6 and

relevant index equalities have been fully propagated through array variables,

4Recall from the proof of Lemma 2.2.2 that a literal is dereference flat if the only terms
occurring as arguments of the function symbols are variables.

5For a general framework covering all these transformations, the reader is pointed to
[Bruttomesso et al., 2012b].

6In practice, this might result in a large combinatorial blow-up. Practical optimizations
for the scalability of this procedure will be described in chapter 4.

54 Lazy Abstraction with Interpolants for Arrays

it is easy to see, by using the same argument as in the proof of Lemma 2.2.2,

that the inconsistency of ψ1 ∧ ψ2 implies that either

ψI1(i1, i0) ∧ ψI2(i0, i2)

is TI-unsatisfiable or

ψE1 (d′1, d
′′
1, d
′′′
1 , d0, e1, e0) ∧ ψE2 (d2, d0, e2, e0)

is TE-unsatisfiable, where we used fresh element variables d0, d
′
1, d
′′
1, d
′′′
1 , d2 in-

stead of the terms a0[i0], a1[i1], a1[i0], a0[i1], a2[i0], respectively. Now it is clear

that we can use the available quantifier-free interpolation algorithms for TI and

TE in order to compute the interpolant ψ0.

3.4 Correctness and termination

Recall that Unwind consists of the exhaustive (non-deterministic) application

of Expand and Refine. We now show that Unwind correctly establishes the

safety of an array-based system when terminating.

Theorem 3.4.1. Let Unwind be applied to an array-based system SAE
I

. If

Unwind reports unsafety, then SAE
I

is unsafe. If neither Expand nor Refine

can be applied to a labeled unwinding P of SAE
I

, then P is safe and complete

(and thus SAE
I

is safe by Theorem 3.2.1).

Proof. The first part of the claim is obvious. For the second part, let us consider

a labeled unwinding P = (V,E,MV ,ME) of SAE
I

to which neither Expand nor

Refine applies. We first show that P is complete. Notice that if leaves are

all labeled by AEI -unsatisfiable formulæ, non-leaf vertexes are a covering, and

the system is complete. On the other hand, if there is a leaf labeled by an AEI -

satisfiable formula, one of the two sub-procedures applies unless the current

labeled unwinding is recognized to be complete – according to Definition 3.2.3

in section 3.2.2 – and hence complete tout court. Thus, the labeled unwinding

must be complete when no sub-procedure is applicable.

Finally, if P is not safe, there is a consistent vertex v whose location is linit.

Now, since linit is not a target location, v must be a leaf; for the same reason,

v is not covered by non-leaf vertexes (the location of these vertexes is not linit).

Thus the labeled unwinding is not complete, hence it cannot be recognized as

such, and Refine is applicable.

3.4 Correctness and termination 55

This result implies the partial correctness of Unwind. In the rest of this

section, we investigate total correctness.

3.4.1 Precisely recognizing complete labeled unwindings

The first step towards the total correctness of Unwind is to have a complete

“default satisfiability procedure” for recognizing complete covers; recall Defini-

tion 3.2.3 in section 3.2.2. The default satisfiability procedure uses the “default

instantiation procedure” to reduce the problem of checking theAEI -satisfiability

of ∃A,I∀I-sentences to checking the AEI -satisfiability of quantifier-free formulæ.

Since a decision procedure for the latter is available (under the hypothesis

that the SMT (TI) and the SMT (TE) problems are decidable as assumed in

section 3.1), we need to find conditions under which the default instantiation

procedure is complete. To formally characterize this, we need to introduce the

following notion.

A class C of structures is closed under substructures if for every structure

M∈ C, it happens that all the sub-structures ofM are also in C. Any theory

whose class of models is specified as the class of models of a set of universal

sentences, i.e. formulæ containing no free variables obtained by prefixing a

quantifier-free formula with a finite sequence of universal quantifiers, is closed

under substructures by well-known results in model theory (see, e.g., [Hodges,

1993]). For example, the theory of posets (i.e. of sets endowed with a reflexive,

transitive and antisymmetric relation) can be axiomatized by a set of universal

sentences and it is thus closed under substructures.

Theorem 3.4.2 ([Ghilardi and Ranise, 2010a]). If there are no function sym-

bols in the signature ΣI of TI and the class CI of models of TI is closed under

substructures, then the AEI -satisfiability of ∃A,I∀I-sentences is decidable.

Proof. We claim that, under the hypotheses of the theorem, theAEI -satisfiability

of (3.7), i.e., ∧
σ∈Σ

ψ(i, jσ, a[i], a[j], c,d) (3.7)

(where Σ denotes the set of all possible substitutions mapping the variables in

j into i ∪ c) implies the AEI -satisfiability of (3.6), i.e.

∃a ∃c ∃d ∃i ∀j. ψ(i, j, a[i], a[j], c,d) . (3.6)

This is sufficient to show the decidability of the AEI -satisfiability of ∃A,I∀I-
sentences since the AEI -satisfiability of (3.7) is decidable by Lemma 2.2.2 and

56 Lazy Abstraction with Interpolants for Arrays

the AEI -satisfiability of (3.6) implies the AEI -satisfiability of (3.7).

We consider a structureM which (together with an assignment to the free

variables c,d) is a model of (3.7) and we derive from this a structure M′

as follows. First, the interpretation of the sort INDEX in M′ is obtained by

restricting that in M of the same sort INDEX (as well as of all symbols in ΣI)

to the subset containing only the elements assigned to the variables in i, c. The

interpretation of the symbols of ΣE in M′ is identical to that of M and the

functions assigned to the a’s in M′ are the same of those in M but restricted

to their domains. Since CI is closed under substructures, M′ is still an AEI -

model. It is easy to see that, since (3.7) is quantifier-free, the truth of (3.7) is

inherited by M′. Additionally, because of the restriction of the interpretation

of the sort INDEX, (3.6) also holds inM′. This concludes the proof of the claim

above.

3.4.2 Termination of Unwind

Now, that we have found conditions under which precise checks to recognize

the completeness of labeled unwindings can be obtained, we focus on studying

the termination of Unwind.

First of all, we notice that the termination of Unwind can be easily ensured

when SAE
I

is unsafe by adopting suitable strategies for the application of the

sub-procedure Expand. For example, a breadth-first strategy used when ex-

panding the labeled unwinding certainly guarantees termination (the design of

other strategies is mostly an implementation issue, see for instance section 4.2

or also [McMillan, 2006]).

If SAE
I

is safe, the termination of Unwind cannot be shown for arbitrary

array-based systems since their safety problem is undecidable in general (see,

e.g., [Ghilardi and Ranise, 2010a]). In the following, we investigate sufficiently

restrictive conditions under which Unwind is guaranteed to terminate. In

particular, we identify two sufficient conditions for this. First, a fair strategy

must be used to apply Expand and Refine. Formally, a strategy is fair if it

does not indefinitely delay the application of one of the two procedures and does

not apply Refine infinitely many times to the label of the same vertex. Notice

that the latter holds if there are no infinitely many non-equivalent formulæ of

the form ψ(i, a[i], c,d) for a given i or, alternatively, if a refinement based

on the computation of interpolants through the precise preimage is eventually

applied when repeatedly refining a vertex.

The second condition for the termination of Unwind concerns the theory

TE. To formalize this, we need to introduce some formal notions. An exis-

3.4 Correctness and termination 57

tential Σ-sentence is a formula containing no free variables that is obtained

by prefixing a quantifier-free Σ-formula with a finite sequence of existential

quantifiers. A structure M is finitely generated iff there exists a finite sub-set

X of the support of M such that the smallest substructure of M containing

X is M itself. An embedding is an injective homomorphism that preserves

and reflects relations and operations. A reflexive-transitive relation � on a

set P is a well-quasi-order (wqo) iff given p0, p1, . . . pn, . . . from P , there are

n < m such that pn � pm. A wqo-theory [Carioni et al., 2011] is a theory

T = (Σ, C) such that C is closed under substructures and finitely generated

models of T are a well-quasi-order with respect to the relation � that holds

between M1 and M2 whenever M1 embeds into M2. As shown in [Carioni

et al., 2011], the following is a wqo-theory: it contains one sort, finitely many

0-ary and unary predicate symbols, a single binary predicate symbol ≤, and its

class of models satisfies the following three (universal) sentences: ∀x (x ≤ x),

∀x, y, z (x ≤ y ∧ y ≤ z → x ≤ z), and ∀x, y (x ≤ y ∨ y ≤ x), constraining ≤ to

be interpreted as a total pre-order.

We also need the following technical result.

Lemma 3.4.1. Let T = (Σ, C) be a wqo-theory and K0, K1, . . . , Kn, . . . be

an infinite sequence of existential Σ-sentences such that Kn |=T Kn+1 for all

n ≥ 0. Then, there exists n > 0 such that Kn |=T Kn−1.

Proof. Suppose the statement does not hold. Then, for every n there exists a

modelMn ∈ C such thatMn |= Kn andMn 6|= Kn−1. Since C is closed under

substructures and Kn is an existential sentence, we can takeMn to be finitely

generated. Notice that truth of ¬Kn−1 is preserved by substructures because

this is a universal formula (see, e.g., [Hodges, 1993]). Since Km |=T Kn−1 for

m < n, we have that Mn 6|= Km for every m < n. Consider now the sequence

M1,M2, . . . ,Mn, . . . of finitely generated models in C. By definition of a well-

quasi-order, there must be m < n such that Mm embeds in Mn. Then, from

Mm |= Km and the fact that Km is existential, it follows that Mn |= Km.

Contradiction.

We are now in the position to state and prove our result on the termination

of Unwind.

Theorem 3.4.3. Let SAE
I

be an array-based system for TI , TE. Suppose that

TI satisfies the hypotheses of Theorem 3.4.2 and that the theory obtained from

TI ∪ TE by adding the symbols in v, seen as free function or constant symbols

of appropriate sorts, is a wqo theory. Then, Unwind terminates when applied

to S with a fair strategy.

58 Lazy Abstraction with Interpolants for Arrays

Proof. If we view the state variables v := a, c,d of the array-based system

SAE
I

= 〈v; linit; lerror;T 〉 as free (function or constants) symbols, the existential

(index) closures of the formulæ (and their disjunctions) labeling the vertexes in

a labeled unwinding of SAE
I

are ∃I-formulæ of the form ∃i ψ(i, a[i], c,d). Thus

these are existential formulæ of the wqo theory mentioned in the statement of

the theorem and Lemma 3.4.1 is applicable.

If the fair strategy used to apply Expand and Refine does not ter-

minate, it generates a sequence of labeled unwindings P0, P1, P2, . . . where

Pj = (Vj, Ej,M
j
V , M j

E) is such that Vj ⊆ Vj+1 and Ej ⊆ Ej+1, written

as (Vj, Ej) ⊆ (Vj+1, Ej+1), for j ≥ 0. In other words, we have an increas-

ing sequence of trees of the form (V0, E0), (V1, E1), ... Consider now the union

(V,E) = (
⋃
k Vk,

⋃
k Ek) of all the trees in the sequence. Since vertices are not

refined infinitely often, we can associate with any vertex v ∈ V its (ultimate)

label M(v). Let Kn be the disjunction of the labels M(v) where v is a vertex

of (V,E) of depth at most n: by Lemma 3.4.1, we have that Kn |=AE
I
Kn−1 for

some n > 0. This means that for every vertex v in (V,E) of depth at most n,

we have that M(v) |=AE
I

∨
w∈CM(w) where C is the set of vertexes of (V,E)

of depth at most n− 1 whose label is AEI -satisfiable.

Let now i be large enough so that every non-leaf vertex of depth at most

n in (V,E)—together with its ultimate label—is in Pi: we show that Unwind

should have terminated after Pi has been produced. There are two cases to

consider. First, C is a covering for all labeled unwinding Pj such that Pi ⊆ Pj
and would cause Unwind to terminate. Second, C is not a covering because C

contains a leaf w. However M(w) is AEI -satisfiable by the definition of C and

is the ultimate label of w. Now we have that M(w) |= pc = linit, otherwise our

fair strategy would have added some vertices as sons of w, because locations

l 6= linit are target locations. This means that a refinement step applies to w.

Since M(w) is AEI -satisfiable and is the ultimate label of w, this means that

such refinement step must have reported the unsafety of SAE
I

.

The hypotheses of Theorem 3.4.3 are rather restrictive when it comes to

the analysis of imperative programs. Fragments of arithmetic play a central

role in this domain and their usage in modeling operations on array indexes

prevents the applicability of Theorem 3.4.3. For an application of this result,

let us consider, therefore, a different application domain, like that of broad-

cast protocols (see, e.g., [Delzanno et al., 1999]). These are systems composed

of a finite but arbitrary number of (identical) processes that can communi-

cate by rendez-vous (a process sends a message to another) or broadcast (a

process sends a message to all the others). Any such system can be speci-

3.5 Related work 59

fied by an array-based system S = 〈v; linit; lerror;T 〉 for TI the (pure) theory

of equality (used to represent process identifiers) and TE an enumerated data-

type theory (representing the finite set of locations of each (identical) process)

where v = a, c,d and a contains just one function symbol (associating a pro-

cess identifier to the actual location reached by the process) whereas both c

and d are empty. As shown in [Ghilardi and Ranise, 2010a], it is possible to

represent rendez-vous and broadcast of messages as guarded assignments in

functional form (3.1). In [Carioni et al., 2011], it is shown that the theories TI
and TE satisfy the hypotheses of Theorem 3.4.3. Thus, Unwind behaves as

a decision procedure for the safety problem of broadcast protocols. A similar

result using forward reachability has been proved in [Dimitrova and Podelski,

2008]. Complexity-wise, for broadcast protocols the reachability analysis has a

non-primitive recursive complexity, as stated in [Esparza et al., 1999,Delzanno

et al., 1999].

It is also possible to show that Unwind behaves as a decision procedure

for the safety problem of lossy channel system systems (see, e.g., [Abdulla

and Jonsson, 1996]): their representation as array-based systems can be found

in [Ghilardi and Ranise, 2010a] and the fact that the latter satisfy the hypothe-

ses of Theorem 3.4.3 is shown in [Carioni et al., 2011].

3.5 Related work

The vast majority of state-of-the-art frameworks for the formal verification of

infinite-state systems is abstraction-based, and a long list of efficient techniques

for the analysis of programs is available in the literature. Below, we discuss the

relevant work classified according to the main technique they use as follows:

predicate abstraction with counterexample guided abstraction refinement pro-

cedures, abstract interpretation, theorem proving-based, shape analysis and

template-based solutions.

3.5.1 Predicate abstraction

Since the seminal paper [Graf and Säıdi, 1997], Predicate abstraction has be-

come a very popular technique in software verification. One of the first ap-

proaches for software verification based on predicate abstraction and able to

handle quantified predicate is in [Flanagan and Qadeer, 2002]. This solution

exploits ghost variables, i.e., Skolem constants which are never modified by the

program. Ghost variables, once the procedure terminates, are not assigned to a

60 Lazy Abstraction with Interpolants for Arrays

precise value and hence can be universally quantified. The index predicate solu-

tion [Lahiri and Bryant, 2004b] fixes the number of “index variables”, i.e., uni-

versally quantified variables, in order to exploit standard predicate abstraction

algorithms. For such two solutions predicates are generally suggested by the

user. The work in [Lahiri and Bryant, 2004a] proposes a refinement technique

based on the weakest precondition, in charge of generating new intermediate

annotations. The main limitation of the aforementioned approaches is their

inability to generate quantified predicates. These approaches would be ineffi-

cient, therefore, on programs without quantified post-conditions or assertions

like those considered in part of our experimental analysis. The generation of

quantified predicates has been addressed also by Jhala and McMillan in [Jhala

and McMillan, 2007], as an extension of their previous work [Jhala and McMil-

lan, 2006]. Interpolating procedure are driven by new axioms with the goal of

generating quantified predicates, called range predicates, representing proper-

ties for ranges of cells in the arrays. While such predicates are restricted to a

particular shape, this is not the case of our technique. Invariants and predicates

can also be generated by analyzing the postcondition with some patterns, like

variable aging or constant relaxation [Furia and Meyer, 2010]. This approach

can generate invariants for many interesting problems, like sorting algorithms.

On the other hand, it cannot handle programs which require quantified invari-

ants but do not have quantified assertions in their specifications.

Arrays can also represent a contiguous, fixed-size, portion of memory. For

this class of programs, blasting every cell of the array as a single, uncorre-

lated variable results in inefficient procedures, as pointed out by in [Armando

et al., 2007b,Armando et al., 2007a], which present an abstraction-refinement

procedure for linear programs with fixed-size arrays.

3.5.2 Abstract interpretation

The approach described in this chapter aims at developing a sound analysis

procedure at the price of non-termination. Our solution does not suffer from

the loss of precision deriving from the use of approximation techniques and,

upon termination, returns either an invariant, which is both safe and induc-

tive, or a real counterexample. Abstract Interpretation (AI) approaches target

efficiency, i.e., they aim to generate inductive (but not necessarily safe) facts

at compile-time. The application of widening operators, required to ensure the

convergence of the analysis, may cause loss of precision, though, with the result

that inferred inductive properties might be too weak to prove the absence of

paths violating a given property.

3.5 Related work 61

AI solutions rely on the availability of some abstract domains for infer-

ring invariants. An abstract domain can be thought of as a (fragment of a)

theory [Gulwani and Tiwari, 2006] identifying a class of formulæ over which

the concrete semantics of the input program is abstracted. Since the semi-

nal paper [Cousot and Cousot, 1977], several domains (such as interval arith-

metic [Cousot and Cousot, 1977], octagons [Miné, 2006], octahedra [Clarisó

and Cortadella, 2007], and convex-polyhedra [Cousot and Halbwachs, 1978])

have been studied in order to reason about different properties of programs.

AI analysis for arrays can be performed by associating one abstract value

to each cell of the array or by smashing array variables, i.e., using one abstract

value representing all the possible values of the array [Blanchet et al., 2002].

The first approach is precise but extremely inefficient while the second, on the

contrary, is much more efficient at the price of (greatly) degrading precision.

Other approaches segment either syntactically [Gopan et al., 2005, Halbwachs

and Péron, 2008] or semantically [Cousot et al., 2011] an array and assign to

each segment an abstract value.

The long-term project Code Contracts7 carried on at Microsoft Re-

search has obtained very good results and its value in both the academic and

industrial scenarios should not be neglected. The project supports static ver-

ification of programs with several analysis tools, many of which are based on

AI techniques such as Clousot.

It is worth to notice that abstract interpretation and CEGAR-based ap-

proaches are not mutually exclusive. They have been successfully combined,

for example, in [Albarghouthi et al., 2012a]. Our Booster framework, dis-

cussed in chapter 8, combines as well abstract interpretation with (our) lawi

solution.

3.5.3 Theorem Proving

Inference of quantified array properties is the goal of the techniques in [McMil-

lan, 2008, Kovács and Voronkov, 2009, Hoder et al., 2010]. The generation of

quantified predicates relies on the use of saturation-based theorem proving (i.e.

resolution extended with inferences to reason about equalities) combined with

interpolation [McMillan, 2008,Hoder et al., 2010] or the solution of recurrence

relations [Kovács and Voronkov, 2009].

Invariants produced by these approaches may be more expressive than those

found by our technique; for instance, they may contain alternations of quan-

7http://research.microsoft.com/projects/contracts

http://research.microsoft.com/projects/contracts

62 Lazy Abstraction with Interpolants for Arrays

tifiers. Indeed, considering a larger class of properties makes the problem of

avoiding divergence even more acute than in our setting. The situation is fur-

ther complicated by the fact that saturation-based theorem provers need to be

instructed with axioms for handling arithmetic and this may, in practice, fur-

ther contribute to the non-termination of the inference process (theoretically,

satisfiability of arbitrary first-order formulæ is semi-decidable). Instead, our

approach relies on SMT-Solvers to take care of the arithmetic operations aris-

ing from the analysis of programs. This, combined with the heuristic of Term

Abstraction (see section 4.1.1), greatly helps to avoid divergence in practice as

shown by the experiments in section 4.2.

3.5.4 Shape analysis and Separation Logic

Heap manipulating programs are the target of shape analysis and separation

logic approaches. Their goal is to infer a conservative characterization of the

structure of the heap at each point of the program (see, e.g., [Reynolds, 2002,

Hind, 2001]). Objects allocated on the heap are represented by a heap graph,

where vertices are object allocated on the heap and edges are pointers accessing

the objects [Chase et al., 1990]. Abstraction of these graphs can be done by

using a three-value logic [Sagiv et al., 1999] or extending predicate abstraction

to work with heap predicates [Podelski and Wies, 2005].

While the goal of these techniques is to provide efficient and, at the same

time, expressive analysis for pointers and unbounded data structures, our goal

is to discover invariants for unbounded array elements.

3.5.5 Template-based approaches

Template based approaches (e.g., [Beyer et al., 2007b,Srivastava and Gulwani,

2009] to cite a few) may infer properties which are more expressive than the

properties inferred by safari, but are limited to those matching a given pat-

tern. On the contrary our solution does not require in general user intervention

in specifying templates for invariant: the only interaction of the user with the

tool is by suggesting an appropriate term abstraction list whenever the tool

seems to diverge. Recently, [Larraz et al., 2013] presents a constraint-based

invariant generation technique suited for the synthesis of quantified array in-

variants. This approach is SMT-based and uses non-linear constraints. It can

synthesize invariants containing just one quantified variable and does not apply

to nested loops. Our approach, instead, is not limited to invariants containing

one quantified variables and can be applied to programs with nested loops, as

3.6 Summary 63

witnessed by the experiments in section 4.2.

3.6 Summary

In this chapter we presented an extension of the Lazy Abstraction with In-

terpolants framework [McMillan, 2006] suitable for the analysis of programs

handling arrays.

Our technique is based on a backward reachability procedure for array-

based transition systems [Ghilardi and Ranise, 2010a] interleaved with a CE-

GAR procedure. Distinguishing features of our technique are the generation of

quantified predicates by a refinement phase using quantifier-free interpolants.

In our approach, the transition relation is preliminary flattened. This pro-

cess ensures that the arrays handled by the program will be only indexed by

existentially quantified variables (section 3.1). State-space is explored in a

backward fashion, according to the Model-Checking Modulo Theories frame-

work described in [Ghilardi and Ranise, 2010a]. In our case, the backward

reachability analysis is enriched with abstraction and refinement procedures

combined following the CEGAR paradigm (section 3.2). In particular, the

refinement procedure includes a quantifier-instantiation step turning quanti-

fied counterexamples in quantifier-free formulæ over arrays. We showed that

the fragment including our counterexamples admits quantifier-free interpola-

tion. This allows to depict an incremental refinement procedure generating

the desired safe inductive invariants (section 3.3). In addition, thanks to the

preprocessing step, the safe inductive invariant will contain existentially quan-

tified variables. Recalling our backward exploration strategy, the safe inductive

invariant we obtain once our new framework terminates is the negation of a

universally quantified safe inductive invariant proving the safety of the input

program. We also discussed some hypothesis ensuring the termination of our

new backward, CEGAR-based, reachability analysis (section 3.4).

Next chapter will discuss engineering strategies for an effective implemen-

tation of the framework presented in this thesis.

3.6.1 Related publications

The results reported in this chapter have been published in the following papers:

• F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina.

Lazy abstraction with interpolants for arrays. In N. Bjørner and A. Voronkov,

64 Lazy Abstraction with Interpolants for Arrays

editors, LPAR, volume 7180 of Lecture Notes in Computer Science, pages

46–61. Springer, 2012.

• F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina.

An extension of lazy abstraction with interpolation for programs with

arrays. Formal Methods in System Design, 45(1):63–109, 2014.

Chapter 4

SAFARI – SMT-based Abstraction
For Arrays with Refinement by
Interpolation

This chapter describes an efficient implementation of the framework presented

in chapter 3 in a model checker called safari – “SMT-Based Abstraction

For Arrays with Interpolants”. The lawi framework presented in chapter 3

has several critical points requiring suitable heuristics for achieving practical

effectiveness. The two most important are the following:

• Quantifier handling. Our lawi framework works with quantified for-

mulæ. Safety tests are checked by evaluating the safety of ∃I-formulæ

which satisfiability is decidable and for which SMT-solvers offer effi-

cient decision procedures. For fix-point tests the situation is complicated

since these are satisfiability problems of ∃A,I∀I-formulæ over the theory

of arrays, generally falling outside known decidable class (e.g., [Ge and

de Moura, 2009,Bradley et al., 2006]).

• Interpolants are not unique. Several variables determines how an abstract

system will be refined: internal heuristics of the solver used to detect the

unsatisfiability of a given formula representing an infeasible counterexam-

ple and the procedure (or, more precisely, the labeling strategy) adopted

to compute the interpolants and the most relevant ones. These param-

eters govern the nature of the outcoming interpolants (strong, weak,

etc.). Computing good interpolants is vital for developing effective model-

checkers, and generally one cannot rely on the interpolants computed

from an interpolation theorem prover (or an SMT-solver). This because

65

66 SMT-based Abstraction For Arrays with Refinement by Interpolation

SMT-solver
A
P
I

4〈v; linit; lerror; {τh}h〉Counterexample

Symbolic
Reachability

Analysis

Quantifier
Handler

Lazy
Abstraction

Refinement

Term
Abstraction

Interpolation

Counterexample
Minimization

(∃∀)ϕ

sat/unsat

∃∀ϕ

ϕ′

v

v̂

ĈE

{v̂′}
φCE’

{ψ}

ϕ

ϕ̂

ψφ1, φ2

ĈE’ĈE

∃∀ϕϕ′φCEsat/unsat

φ1, φ2ψ

UNSAFE

SAFE

Figure 4.1. The architecture of safari.

the interpolation prover, which is not aware of the nature of the program,

cannot select blindly the best setting for producing “good” interpolants.

These two problems require practical engineering choices in order to develop an

effective model checker. In this chapter we present the architecture of safari,

discuss the heuristics implemented to make it scaling on non-trivial state-of-

the-art benchmarks and analyze its thorough experimental evaluation.

4.1 Implementation and heuristics

Given the tight link with the content of chapter 3, we assume the same back-

ground notions introduced in section 3.1.

The architecture of the tool is depicted in Figure 4.1. Modules drawn as

square boxes represent usual modules of CEGAR-based model checkers with

interpolation-based refinement. Those drawn as clouds constitutes the novel

features of our tool.

Our tool maintains and modifies a labeled unwinding (V,E,MV ,ME) (see

section 3.2.1 for a formal definition). We assume a total ordering �⊆ V × V
respecting the ancestor relation. In our implementation, each vertex v ∈ V is

4.1 Implementation and heuristics 67

flagged as free, covered or locked. When created, all the vertices are free. A

vertex v can become covered only if i) there exists a set of free vertices C such

that (3.4) holds, i.e.

MV (v)∃ |=AE
I

∨
w∈C

MV (w)∃

where w � v for all w ∈ C, and ii) all the vertices from v to ε are free. A

vertex becomes locked when one of its ancestors gets covered.

The Symbolic Reachability Analysis module implements two procedures: Ex-

pand and Reduce. The Expand procedure is in charge to expand the labeled

unwinding, as explained in section 3.3. The practical implementation of this

procedure, however, deviates from the high-level description provided in the

previous sections by introducing some important optimizations. In our imple-

mentation Expand is applied only to free leaves. Every new leaf w generated

by a vertex v is labeled with the preimage of MV (v) along the transition whose

matrix is associated to ME(w, v). This allows to discover immediately trivial

infeasible paths, i.e., those for which the preimage is AEI -unsatisfiable. The

choice of the leaf to expand is also subject to several optimizations. As will

be detailed later, the efficiency of the tool greatly depends on its ability to

perform covering tests. Such tests are based on instantiation procedures whose

complexity might badly affect the overall performance of safari. Also the

exploration strategy (i.e. the selection of the leaves to expand) strongly affects

the performance of the tool. We will describe the exploration strategy imple-

mented in safari later in section 4.1.3, when heuristics and optimizations for

efficient covering checks will be discussed. The other procedure implemented

by this module, namely Reduce, is in charge to limit the growth of the labeled

unwinding. It works by checking the vertices of the labeled unwinding with

the goal to find the covered or locked ones. Reduce is eagerly applied before

and after the Expand procedure. When applied before the expansion of the

labeled unwinding, Reduce checks if any vertex on the path from ε to the

leaf selected for expansion is covered, starting from ε. Its application after the

generation of the new leaves avoid their processing in case they are already

covered. Indeed, only free newly generated vertices are passed to the Lazy Ab-

straction module. Given an abstracted leaf v̂, it is checked if MV (v̂)∧ pc = linit
is AEI -satisfiable. If so, the path from ε to v̂, represented as ĈE in Figure 4.1,

is passed to the Refinement module. If all the leaves are flagged as covered or

locked, the labeled unwinding is complete (recall Definition 3.2.3) and the set

of free vertices is the covering associated to it. In this case, safari reports

that the system is safe.

68 SMT-based Abstraction For Arrays with Refinement by Interpolation

The Lazy Abstraction module is in charge to abstract labels of vertices in

the unwinding. Remember that for every vertex v, MV (v) is a quantifier-

free formula of the kind ψ(i, a[i], c,d) such that MV (v) |=AE
I
pc = l for some

location l. This module returns a vertex v̂ such that MV (v̂) |=AE
I
pc = l and

MV (v) |=AE
I
MV (v̂).

The Refinement module implements the procedure described in section 3.3.2.

It takes as input a sequence of transitions representing a candidate counterex-

ample, and it is in charge to generate a formula attesting its feasibility. If this

module fails (i.e. the formula is unsatisfiable), then the Interpolation module

comes into play, as in standard interpolation-based refinement procedures. In

case the (external) SMT-solver implements interpolation procedures, the Inter-

polation module can be bypassed by asking interpolants to the external tool.

An abstract interface provides an API to separate the actual SMT-solver used

and the services which are requested by safari. The interface with external

tools is based on the SMT-LIB v.2 standard [Ranise and Tinelli, 2006]. Refin-

ing a path might result in uncovering some vertices. Refining a vertex in the

covering set C triggers a procedure that checks if the covering relation (3.4)

still holds or not, and modifies the labeled unwinding as a consequence of this

fact: if a vertex v was covered by a refined vertex w, and this covering relation

does not hold anymore, v is considered again as a free vertex, with any locked

descendant.

4.1.1 Term Abstraction

State-of-the-art interpolation procedures seldom allow the convergence of the

model-checker on tricky examples. Divergence due to the inability of interpo-

lation algorithms to come up with the “right” predicate has been already dis-

cussed in [Jhala and McMillan, 2006,Jhala and McMillan, 2007] in the context

of verification of programs with scalar variables. Here, we propose a technique,

called Term Abstraction, to tune interpolation algorithms in presence of array

variables. The heuristic is implemented by the module Term Abstraction in the

architecture of Figure 4.1 and its goal is to compute (whenever possible) an

interpolant where a certain set T of terms (called undesired terms), which are

responsible for keeping interpolants too specific for the analyzed counterexam-

ple, do not occur. Ultimately, abstracting away undesired terms in T aims to

avoid the divergence of the sequence of interpolants generated during unwinding

calls. In particular, Term Abstraction is based on the preprocessing technique

described in section 2.3.1 that rewrite formulæ of the form ψ(· · · a[c] · · ·) to

∃j(j = c ∧ ψ(· · · a[j] · · ·)). More precisely, term abstraction works as follows.

4.1 Implementation and heuristics 69

Suppose we are given an unsatisfiable formula ψ1 ∧ ψ2 and the set T =

{t1, . . . , tn} of undesired terms. We iteratively check if ψ1(ci/ti) ∧ ψ2(di/ti) is

unsatisfiable, for ci and di being fresh constants. If this is the case, we substitute

ψj with ψj(ci/ti) for j = 1, 2. Eventually, we are left with an unsatisfiable

formula ψ1 ∧ ψ2, where some of the undesired terms in T might have been

removed: the interpolant of ψ1 and ψ2, which can be computed with available

interpolation procedures, is also likely not to contain the eliminated terms.

safari is capable to automatically compute a set of undesired terms to from

the input transition system by identifying loop iterators, variables representing

the lengths of the arrays, or loop bounds. Alternatively, the user can suggest

terms to be put in the set of undesired terms. The experimental evaluation of

safari in section 4.2 shows that Term Abstraction plays a crucial role in the

success of safari.

Example 4.1.1. Consider location l2 in Figure 2.2 corresponding to the end

of the first loop in the Running procedure of Figure 2.1. safari has to generate

the following invariant:

pc = l2 → ∀z0. ((0 ≤ z0 ∧ z0 < L)→ (a[z0] ≥ 0↔ b[z0])) . (4.1)

Key to generate this invariant is Term Abstraction. In the following, we explain

how this is done. Consider the counterexample represented by the sequence

of transitions τ0, τ3, τ4, τ8, τ9, generated by safari during the verification of

the Running procedure. To generate (4.1), we can consider the following two

partitions:

B :=

(
mov(l0, l1, 1) ∧ i(1) = 0 ∧ id(f, a[z0], b[z0], 1) ∧
mov(l1, l2, 2) ∧ i(2) = 0 ∧ i(1) ≥ L ∧ f (2) ∧ id(a[z0], b[z0], 2) ∧

)

A :=

mov(l2, l2, 3) ∧ a(2)[z0] ≥ 0 ∧ ¬b(2)[z0] ∧ i(2) < L ∧
z0 = i(2) ∧ i(3) = i(2) + 1 ∧ ¬f (3) ∧
mov(l2, l3, 4) ∧ i(3) ≥ L ∧ id(i, f, 4) ∧
mov(l3, l4, 5) ∧ ¬f (4) ∧ id(i, f, 5)

An interpolant for these partitions is I1 := i(2) < L since A |=AE

I
I1 and I1 ∧B

is AEI -unsatisfiable. Unfortunately, I1 cannot be generalized to a quantified

invariant as it contains no index variable.

Now, let T = {L, i} be the set of undesired terms. The term abstraction

procedure checks the unsatisfiability of A(c/L)∧B(d/L) for the fresh constants

70 SMT-based Abstraction For Arrays with Refinement by Interpolation

ε

v1 v3 v5

v2 v4 v6 v8 v10

v7 v9

τ0τ1τ4τ5τ11

τ6τ7

τ9(z0)

τ8

τ10(z0)

Figure 4.2. Part of the labeled unwinding for the Running procedure. MV (v68) ∧
pc = lI is AEI -satisfiable and MV (v35)∃ |=AE

I
MV (v31)∃.

c and d. The resulting formula is satisfiable, the procedure restores the original

formulæ A and B, and checks whether A(c/i(2))∧B(d/i(2)) is unsatisfiable. In

this case it succeeds and it is thus able to generalize over the variable i. The

interpolant produced in this case is I2 := z0 < L. Beside being a correct

interpolant for the two original partitions, since A |=AE
I
I2 and I2 ∧ B is AEI -

unsatisfiable, I2 can be generalized to a quantified property that constitutes

one of the building blocks of (4.1).

4.1.2 Minimizing counterexamples

It is useful for Refinement to apply a minimization procedure to counterex-

amples with the goal to compute interpolants from a minimal (unsatisfiable)

suffix of a trace containing the atom pc(n) = lI . We illustrate the advantages

of this by considering the following situation. Consider (part of) the labeled

unwinding depicted in Figure 4.2, generated by safari while analyzing the

Running procedure in Figure 2.1. MV (v68) ∧ pc = lI is AEI -satisfiable, and v31

covers v35 since

MV (v31) := pc = l1 ∧ i < L ∧ z0 6= z1 ∧ a[z1] ≥ 0 ∧ z1 = i

MV (v35) :=

(
pc = l1 ∧ i < L ∧ z0 6= z1 ∧ a[z1] = 0 ∧ z1 = i ∧
b[z0] ∧ z0 = 0 ∧ L > 0 ∧ L ≤ i+ 1

)

The counterexample is represented by the following formula:

mov(l0, l1, 1) ∧ i(1) = 0 ∧ id(f, a[z0], a[z1], b[z0], b[z1], 1) ∧
mov(l1, l1, 2) ∧ z0 6= z1 ∧ i(2) = i(1) + 1 ∧ i(1) > L ∧

z1 = i(1) ∧ a(1)[z1] ≥ 0 ∧ id(f, a[z0], b[z0], 2) ∧

4.1 Implementation and heuristics 71

mov(l1, l2, 3) ∧ i(3) = 0 ∧ L ≤ i(2) ∧ f (3) ∧ id(a[z0], a[z1], 3) ∧
mov(l2, l2, 4) ∧ a(3)[z0] ≥ 0 ∧ ¬b(3)[z0] ∧ i(3) < L ∧

z0 = i(3) ∧ i(4) = i(3) + 1 ∧ ¬f (4) ∧
mov(l2, l3, 5) ∧ L ≤ i(4) ∧ id(i, f, 5) ∧
mov(l3, l4, 6) ∧ ¬f (5) ∧ id(i, f, 6)

The analysis of this counterexample can produce two different sets of inter-

polants:

{⊥}
mov(l0, l1, 1) ∧ i(1) = 0 ∧ id(f, a[z0], a[z1], b[z0], b[z1], 1) ∧
{i(1) > z0}

mov(l1, l1, 2) ∧ z0 6= z1 ∧ i(2) = i(1) + 1 ∧ i(1) > L ∧
z1 = i(1) ∧ a(1)[z1] ≥ 0 ∧ id(f, a[z0], b[z0], 2) ∧
{z0 < i(2) ∧ z0 ≥ 0}

mov(l1, l2, 3) ∧ i(3) = 0 ∧ L ≤ i(2) ∧ f (3) ∧ id(a[z0], a[z1], 3) ∧
{z0 < L ∧ i(3) ≤ z0}

mov(l2, l2, 4) ∧ a(3)[z0] ≥ 0 ∧ ¬b(3)[z0] ∧ i(3) < L ∧
z0 = i(3) ∧ i(4) = i(3) + 1 ∧ ¬f (4) ∧
{>}

mov(l2, l3, 5) ∧ L ≤ i(4) ∧ id(i, f, 5) ∧
{>}

mov(l3, l4, 6) ∧ ¬f (5) ∧ id(i, f, 6)

{>}

or

{⊥}
mov(l0, l1, 1) ∧ i(1) = 0 ∧ id(f, a[z0], a[z1], b[z0], b[z1], 1) ∧
{⊥}

mov(l1, l1, 2) ∧ z0 6= z1 ∧ i(2) = i(1) + 1 ∧ i(1) > L ∧
z1 = i(1) ∧ a(1)[z1] ≥ 0 ∧ id(f, a[z0], b[z0], 2) ∧

72 SMT-based Abstraction For Arrays with Refinement by Interpolation

{z0 < i(2) ∧ L ≤ z0 + 1}
mov(l1, l2, 3) ∧ i(3) = 0 ∧ L ≤ i(2) ∧ f (3) ∧ id(a[z0], a[z1], 3) ∧
{z0 = L− 1}

mov(l2, l2, 4) ∧ a(3)[z0] ≥ 0 ∧ ¬b(3)[z0] ∧ i(3) < L ∧
z0 = i(3) ∧ i(4) = i(3) + 1 ∧ ¬f (4) ∧
{L ≤ i(4)}

mov(l2, l3, 5) ∧ L ≤ i(4) ∧ id(i, f, 5) ∧
{>}

mov(l3, l4, 6) ∧ ¬f (5) ∧ id(i, f, 6)

{>}

The analysis of the first counterexample allows for the refinement of vertices

v4, v9, and v31. The analysis of the second counterexample permits the deletion

of vertex v31, as the new label is unsatisfiable, and the refinement of vertices

v9, v4, and v2. Notice that the second case has the drawback of “uncovering”

vertex v35, that, before the refinement, was covered by v31 since

MV (v35)∃ |=AE
I
MV (v31)∃ .

After the refinement such a relation does not hold anymore and v31 can be

explored again.

Minimizing the counterexample aims at saving and preserving as much as

possible the labeled unwinding. In fact, in the situation considered above,

while the first set of interpolants refines only a small portion of the labeled

unwinding, the second one modifies a substantial part of the unwinding and

destroys part of it. The flip side of this heuristic is that postponed inconsisten-

cies in the data-flow might appear again in counterexamples generated by later

calls of Unwind, constituting the only unsat core of infeasible formula from

which interpolants will be computed. In this case, the new set of interpolants

would refine (and maybe destroy) the already specialized and well-refined pe-

ripheral parts of the labeled unwinding. In practice, our experience suggests

that minimizing counterexamples pays off in most situations.

4.1 Implementation and heuristics 73

4.1.3 Instantiating universal quantifiers

The presence of quantified formulæ can be problematic and requires particular

attention in several phases of the analysis. Quantified formulæ arise while

checking covering tests and the feasibility of counterexamples. In particular,

given the eager application of the Reduce procedure, the vast majority of

safari execution time is spent for checking covering relations. As stated in

section 3.2.2, a vertex v is covered by a set of vertices C iff

MV (v)∃ |=AE
I

∨
w∈C

MV (w)∃ (4.2)

holds or, dually, if

MV (v)∃ ∧
∧
w∈C

¬
(
MV (w)∃

)
(4.3)

is AEI -unsatisfiable. Stack-handling procedures available in state-of-the-art

SMT-Solvers allows to perform such a test in an incremental way, asserting

few formulæ representing the labels of the vertices in the set C at a time. As

discussed in section 3.2.2, (4.3) is a formula of the form

∃a ∃c ∃d ∃i ∀j. ψ(i, j, a[i], a[j], c,d) , (4.4)

where the i are the INDEX variables of the vertex v and j comes from the INDEX

variables of vertices w. As said in section 3.2.2, safari deals with formulæ

of the form (4.4) by using an (incomplete) satisfiability procedure based on

the instantiation of j over the set i ∪ c of variables. Considering all possible

instances becomes soon infeasible as they are |j||i∪c|. Several heuristics are

integrated in safari to efficiently handle this instantiation process, part of

which are inherited from the tool mcmt [Ghilardi and Ranise, 2010b,Ghilardi

et al., 2009]. We discuss them in the rest of this section.

4.1.4 Exploration strategy

This heuristic addresses the problem of limiting the growth of the length of the

tuple j of variables; recall that j represents, intuitively, the INDEX variables of

the labels MV (w) in (4.3).

With standard exploration strategies, such as breadth- or depth-first search,

the number of index variables labeling the leaves might grow very quickly.

Notice that it is possible to predict the number ek of (implicitly existentially

quantified) index variables occurring in the formulæ labeling the vertex vk in

74 SMT-based Abstraction For Arrays with Refinement by Interpolation

a path of the form π = v0 → · · · → vm with vm = ε by simply counting the

existentially quantified index variables in τk+1 ∧ · · · ∧ τm from (3.8). In fact,

the number of index variables that will occur in the formula labeling vk after

the update (3.18) is bounded by ek, because it is derived from the interpolants

computed along the path π above.

Heuristics [Ghilardi and Ranise, 2009,Ghilardi and Ranise, 2010b] designed

to reduce the number of index variables in preimages developed for the back-

ward reachability procedure of mcmt can also be put to productive use in

safari. These heuristics affect the selection of leaves in the Expand proce-

dure, promoting the expansion of leafs with a small number of index variables.

safari keeps an ordered list of leaves of the tree. The ordering of the leaves

is firstly based on the number of INDEX variables, and secondly, if the number

of INDEX variables is equal, on the � relation introduced in previous section.

The effect of maintaining such a list is that Expand works always on a leaf

with the smallest number of variables. Such a smart exploration strategy helps

also during refinement, where quantified queries (expressing trace feasibility)

are Skolemized and instantiated, thus producing equisatisfiable quantifier-free

queries on which interpolation algorithms are executed.

4.1.5 Filtering instances

Adopting a smart exploration strategy helps in alleviating the burdens on the

default quantifier instantiation procedure described in section 3.2.2. Even if

the problem of checking satisfiability of quantified formulæ attracted a lot

of interest recently (e.g., [Ge and de Moura, 2009, Ge et al., 2009, de Moura

and Bjørner, 2007]), efficient solutions have been implemented only in few

SMT-Solvers. We describe here another optimization devised for reducing the

impact of our default instantiation procedure on the performances of safari

even more. This other optimization plays a significant role in the instantiation

process, especially when checking covering of vertices, aims to reducing the in-

stantiations performed for each covering test. Such optimization is based on the

filtering modulo enumerated data-type [Ghilardi and Ranise, 2009] heuristics.

They cut the number of instantiations of the universally quantified variables by

exploiting cheap checks involving information cached in specific data-structures

used to represent formulæ.

4.2 Experiments 75

4.1.6 Primitive differentiated form

safari inherits from mcmt the feature to keep all formulæ labeling vertices of

the unwinding in a primitive differentiated form. An ∃I-formula ∃i.φ(i, a[i], c,d)

is primitive iff it is a conjunction of literals and is differentiated iff it contains

the negative literal ik 6= il for every ik, il ∈ i. Notably, this format avoids

the computationally expensive enumeration of partitions in the interpolation

algorithm described in section 3.3. Primitive differentiated form helps also in

reducing the number of possible instantiations while checking the unsatisfiabil-

ity of formulæ of the form (4.4).

4.2 Experiments

We now present an experimental evaluation of safari. We have run safari

against safety problems that require reasoning on arrays of unknown length

(the benchmarks are illustrated in section 4.2.1). The goal of the experimen-

tal analysis is to measure the impact of the heuristics Term Abstraction (TA)

and Counterexample Minimization (CM) discussed in section 4.1.1 and sec-

tion 4.1.2, respectively (our findings are reported in section 4.2.2), showing

that they play a central role in making safari effective on non-trivial proce-

dures.

4.2.1 Benchmarks

Our problems are divided in two benchmark suites:

• Suite 1 consists of 13 of the 28 problems (both safe and unsafe) con-

sidered in [Dillig et al., 2010]. The programs in the problems perform

simple manipulations on arrays; e.g., copying an array into another, con-

catenating two arrays, and swapping the content of two arrays. The

safety properties are expressed by loops containing quantifier-free asser-

tions (similarly to what is done in Figure 2.1 for the procedure Running).

Each problem in Suite 1 is labeled by “Dn” where n is a natural num-

ber used to identify the problem in [Dillig et al., 2010]. Since our tool

is capable of natively supporting quantified assertions (such as (2.8) for

the procedure Running), from each problem “Dn” we have derived a new

(equivalent) problem identified with “QDn” by replacing the loop (or

loops) encoding the safety property with the corresponding quantified

76 SMT-based Abstraction For Arrays with Refinement by Interpolation

property. There are no problems “QD06” and “QD17” since the quan-

tified properties require the use of divisibility predicates in linear arith-

metic or the introduction of an alternation of quantifiers. Both cases are

beyond the expressiveness of the language currently taken in input by

safari.

There are two reasons for the exclusion of 15 problems in [Dillig et al.,

2010]. First, some of the problems in [Dillig et al., 2010] require inter-

polants over LIA, i.e., linear arithmetic over the integers. LIA is not

supported by OpenSMT [Bruttomesso et al., 2010]. Second, the remain-

ing problems have been discarded because of the presence of C functions,

such as buffer size, that are not related to the kind of (quantified)

array properties of interest to us in this work.

• Suite 2 contains 25 programs taken from several sources, e.g., the bench-

mark suite of Boogie1 and Why3,2 papers [Armando et al., 2007b,Hoder

et al., 2010] on tools related to safari, books on algorithms and data

structures (such as [Wirth, 1978]), standard C string functions library,

and problems suggested by experts in the area. Each program generates

both a safe and an unsafe problem; the latter obtained from the former

by manually inserting a bug in the problem. The programs in Suite 2

can be briefly described as follows:

– binarySort is an implementation of the “binary sort” algorithm in [Wirth,

1978]. We check that, once the procedure terminates, the array is

sorted.

– bubbleSort is an implementation of the “bubble sort” algorithm

in [Armando et al., 2007b]. We check that, once the procedure

terminates, the array is sorted.

– comp implements the strcmp function in [Hoder et al., 2010] for

comparing the content of two arrays. This function returns true

if the two input arrays are equal. We check that if the procedure

returns true, the two input arrays are indeed equal.

– compM is a modified version of comp where the first equal segment

of two arrays is copied in a third one. This function returns true

if the two input arrays are equal. We check that if the procedure

returns true, the two input arrays are indeed equals and also that

the local copy of the array is equal to the input array.

1http://research.microsoft.com/en-us/projects/boogie/
2http://proval.lri.fr/

http://research.microsoft.com/en-us/projects/boogie/
http://proval.lri.fr/

4.2 Experiments 77

– copy implements the strcpy function in [Hoder et al., 2010] for

copying the content of an array into another. The property we

check is that, at the end of the procedure, the input array has been

correctly copied in the returned one.

– copyN is a modified version of copy where the content of the input

array is copied in N arrays (one at a time) before being copied in

the last array. We check that, in the end, the N -th copied array is

equal to the first one.

– find implements the linear search algorithm in [Hoder et al., 2010].

Such function returns the smallest index of the array where the

element of interest is stored. We check that if the procedure returns

a value bigger than the size of the array, the array does not contain

the given element to search for.

– findTest is an extended version of find with an extra loop that checks

if the returned index is the smallest one storing the given element

that has been searched for. If so the function returns true. We check

that the function always returns such a value.

– heapArr - Benchmark where the heap (abstracted as an array) is

modified only in some parts. Since the postcondition asserts facts

on a bigger portion, the tool has to infer that for any position outside

the modified ones, the heap remained untouched. (This example has

been kindly suggested by K. Rustan M. Leino).

– init implements the procedure in [Hoder et al., 2010] to initialize all

the cells of an array to some value. We check that, at the end of the

procedure, the array has been correctly initialized.

– initTest is an extended version of init with an extra loop checking

that the array has been initialized. This function returns true if the

extra loop does not find any error. We verify that the procedure

always returns true.

– maxInArr and minInArr implement linear search procedures for

largest and smallest, respectively, values in an array (taken from

http://proval.lri.fr/). We check that the functions respectively

correctly return the biggest or smallest value of the array.

– nonDisj is a procedure that takes in input an array a of integers and

saves in a local array variable b all the position i where a[i] > 0,

such that the property a[b[j]] > 0 is satisfied for all the element j

http://proval.lri.fr/

78 SMT-based Abstraction For Arrays with Refinement by Interpolation

such that b[j] is smaller than than the size of a. We check that this

property is satisfied by every position of b that has been initialized

by the procedure.

– partition implements an algorithm to distribute the content of an

array in two: one holding all non-negative values and the other all

the negative values (taken from [Hoder et al., 2010]). We check that

the two target arrays contains only non-negative and positive values,

respectively.

– running is the procedure in Figure 2.1. We check that assertion (2.8)

is never violated.

– vararg is the procedure in [Hoder et al., 2010] searching for the first

position of the input array storing the symbolic constant NULL,

marking the point up to which the array has been initialized. We

check that the procedure returns the first position where the input

array contains the value NULL.

To quantitatively characterize the problems in the two benchmark suites, we

have identified the following three parameters: the numbers l and n of non-

nested and nested, respectively, loops in the body of the program and the

number q of quantifiers in the safety property. The interest of these figures lies

in the fact that safari, like any tool based on a CEGAR-like strategy, suffers

from

• the presence of several non-nested loops in the program. This is because

each counter-example found by unwinding must go through the l loops.

Thus, refinement should be able to generalize the invariants for all the l

loops from the same (inconsistent) formula representing the (infeasible)

counter-example. In this respect, the problems identified by “copyN ,”

where N represents the number of loops in the program, in Suite 2 are

particularly relevant (notice that l = N).

• the “depth” n of nested loops3. The problem is that the infeasibility of

a counter-example may derive from the interaction of variables that are

updated in two or more nested loops. For example, in the case of two

nested loop, the behavior of the inner loop is influenced by the opera-

tions performed in the outer loop. The interplay among the variables is

3n = 0 means that the program does not have nested loops, n = 1 identifies programs
with at least one nested loop, etc.

4.2 Experiments 79

indeed reflected in the counter-example found by unwinding and refine-

ment must then be able to synthesize an invariant describing the possibly

complex relationships among the elements stored in several array vari-

ables. In this respect, the problems binarySort and bubbleSort in Suite

2 are particularly interesting because they contain two nested loops (n

= 1).

• the presence of a number q of quantifiers in the property to be verified.

The crucial observation here is that unbounded arrays (i.e. of finite but

unknown dimension) require the capability to identify quantified predi-

cates for synthesizing the invariants for discharging the safety property.

So, the higher the number q of quantified variables in the property, the

higher the complexity to find quantified predicates that imply the prop-

erty. In this respect, the problems identified by “QDn” in Suite 1 are

particularly relevant (notice that q = 1). In fact, comparing the perfor-

mances of safari on “Dn” and “QDn” will give an idea of the advantages

and disadvantages to use properties expressed by quantified (q > 0) and

quantifier-free (q = 0) assertions, respectively.

4.2.2 Importance of the heuristics

We now show that the heuristics Term Abstraction (ta) and Counterexample

Minimization (cm) – described in section 4.1.1 and section 4.1.2, respectively

– are key to the scalability of safari. To show this, we have run safari

on both benchmark suites with the heuristics turned on and off. All the

experiments have been conducted on a computer equipped with an Intel(R)

Core(TM)2 Quad CPU @ 3.00GHz and 12 GB of RAM running Linux Debian

“jessie.” The complete benchmark suites and the executable of safari used for

the evaluation are available at http://verify.inf.usi.ch/content/safari.

The results are reported in Table 4.1 and 4.2 for Suite 1 and Table 4.3 and

4.4 for Suite 2.

In all the tables, the column ‘Pb.’ reports the identifier of the problem

together with the tuple (l, n, q) representing the number of loops, maximum

level of nesting, and number of quantified variables in the assertions, respec-

tively (see section 4.2.1 for a description). Since Suite 1 contains both safe

and unsafe problems, the column ‘status’ of Table 4.1 and 4.2 reports if the

problem is safe or unsafe. Since Suite 2 contains a safe and an unsafe ver-

sion of the same problem, Table 4.3 and 4.4 groups the statistics of safari

for the safe and unsafe variants of the same problem. Table 4.1 and Table 4.3

http://verify.inf.usi.ch/content/safari

80 SMT-based Abstraction For Arrays with Refinement by Interpolation

report the execution time of safari (in seconds with a time out of 1 hour),

Table 4.2 and 4.4 report the number of refinements (with a maximum of 150)

used by safari. Each table reports measures (time or number of refinements)

for the following configurations of safari: no use of abstraction (NoA), i.e.

safari performs backward reachability, use of abstraction with both heuristics

switched off (NoH), use of abstraction with only Counter-example Minimiza-

tion turned on (cm), use of abstraction with only Term Abstraction turned on

(ta), use of abstraction with both heuristics turned on (cmta).

The results reported in the tables show the importance of heuristics for

the scalability of safari. Heuristics play a crucial role in allowing safari to

convergence on safe programs: without them, in fact, safari is almost never

able to converge as shown by looking at the columns NoH in all the tables.

We also observe that the role of the two heuristics is quite different. In fact,

Counter-example Minimization alone allows safari to converge on few more

examples than when the tool is executed without options (compare the columns

NoH and cm in the tables). Instead, Term Abstraction alone enables safari

to converge on many more problems (compare the columns NoH and ta in the

tables). The problems on which safari fails to converge with Term Abstraction

only turned on are successfully verified by using both heuristics (compare the

columns ta and cmta in the tables). We can explain the differences in the

impact of the heuristics as follows.

Recall from section 4.1.1 that Term Abstraction allows safari to induce

the interpolation procedure to return an interpolant that could be potentially

more useful for refinement. In other words, Term Abstraction has an impact

on how a counter-example is refined. Instead, Counterexample Minimization

(recall section 4.1.2) tries to find the smallest unsatisfiable suffix of the counter-

example in order to prune the search space as much as possible. In other words,

Counterexample Minimization addresses the problem to find where to refine a

counter-example. So, Term Abstraction alone is sufficient when the counter-

examples to be refined are not long and it is thus crucial how refinement is

performed. When counter-examples become longer, it is also important where

to refine them, not only how. On such problems, it is only the combination of

the two heuristics that is winning.

We conclude by observing that in case of unsafe problems, the overhead of

using abstractions with the heuristics turned on is small (compare the columns

NoA and cmta in the tables for unsafe problems).

4.3 Discussion 81

4.3 Discussion

We can summarize the findings of the experimental analysis as follows.

The success of safari is determined by a careful tuning of precision in the

refinement phase of the CEGAR loop on which the tool is based. In particular,

Term Abstraction is capable of inducing the interpolation procedure to provide

the “right” interpolants, i.e. formulæ that give rise to a more precise but not

too precise abstraction of the program so as to permit safari to converge.

When counter-examples are longer, the use of Counter-example Minimization

in conjunction with Term Abstraction becomes crucial to drive the refinement

procedure towards a good and successful refinement of the abstract model.

The capability to specify quantified assertions and reasoning about arrays

of unbounded length allows safari to consider compact annotations and ver-

ify programs regardless of the number of cells in an array. This makes the

results of the verification more useful since safety holds for arrays of finite

but arbitrary size and, at the same time, may improve performances by using

compact (symbolic) representations of the set of (backward) reachable states

during unwinding.

The experimental evaluation of the next chapter will build on the framework

depicted in Figure 4.1. Chapter 8 presents a thorough experimental evaluation

of Booster, a framework integrating the techniques presented so far with

other static analysis solutions that will be presented along the thesis. Booster

will be compared with other relevant state-of-the-art tools.

The following chapters will describe orthogonal techniques with respect to

abstraction that will allow for an effective analysis of programs with arrays. As

shown in this chapter, abstraction-based solutions do suffer from a degree of

randomness requiring several heuristics. To go beyond the limits of abstraction-

based frameworks, one has to combine them with different solutions, one of

which is acceleration. The combination of abstraction and acceleration is what

will determine the real practical effectiveness of Booster.

4.4 Related work

In this section we present different tools that are related to safari.

The tool ACSAR [Seghir et al., 2009] is a software model-checker adopting

a backward reachability procedure in which new predicates are generated by

simulating the “pre” operator on spurious counterexamples. This constitutes

the main difference with respect to our approach, which performs refinement

82 SMT-based Abstraction For Arrays with Refinement by Interpolation

by means of interpolants. Another related tool is Eureka [Armando et al.,

2007b,Armando et al., 2007a] implementing, as discussed earlier in section 3.5,

an abstraction-refinement procedure for linear programs with fixed-size arrays.

The ICE framework [Garg et al., 2014] targets the problem to generate

quantified safe inductive invariants by exploiting some machine learning tech-

niques.

The tools Astree and Clousot implement some solutions for the analy-

sis of programs with arrays as described respectively in [Blanchet et al., 2002]

and [Cousot et al., 2011]. The problem here is that the application of the

join and widening operators (the last one required for ensuring the termina-

tion of the analysis) cause a loss of precision resulting in different false alarms.

From an evaluation of the on-line version of Clousot, available at , we ob-

served the following results. On the safe versions of the 25 programs in Suite

2, Clousot is able to verify only 4 programs (namely, find, init, partition,

and vararg) while on the unsafe versions is able to identify the bug for 2 pro-

grams only (namely, partition and vararg). This confirms our intuition that

the trade-off between precision and efficiency in Clousot is not satisfactory

when (quantified) assertions about array programs are to be verified.

The Vampire theorem prover is the only theorem prover, to the best of

our knowledge, with interpolation features [Hoder et al., 2011]. It has been

exploited inside Lingva [Dragan and Kovács, 2014], a tool for the analysis of

C programs.

Predator [Dudka et al., 2011, Dudka et al., 2013] is another well-known

software model-checker targeting shape analysis and verification of code manip-

ulating of dynamic data-structures. While Predator was successfully used to

prove memory safety of programs operating on unbounded linked lists [Beyer,

2013], it is not yet able to prove that the array returned by a sorting algorithm

is sorted. Additionally, the abstraction algorithms implemented in Predator

cannot handle arrays of unbounded size. However, as pointed out in [Dillig

et al., 2010], the two techniques are orthogonal and their integration is likely

to benefit both of them.

4.5 Summary

In this chapter we presented an effective implementation of the results pre-

sented in chapter 3. We discussed the necessary heuristics implemented to

make the tool effective, both on the side of handling quantifiers and on the

side of driving the interpolation procedure towards the generation of good in-

4.5 Summary 83

terpolants.

The most important heuristic of safari is Term Abstraction (section 4.1).

It allows to generalize interpolants, increasing the chances of convergence of

the model-checker. safari couples Term Abstraction with another heuristics

called Counterexample Minimization. Counterexample Minimization allows to

preserve as much as possible the status of the state-space explored by the tool.

The tool has been tested on various examples taken from the recent liter-

ature on invariant generation. The experiments show the importance of the

heuristics we implemented and the effectiveness of the tool (section 4.2).

Executables of safari, the benchmark suite and some tutorials are available

from http://verify.inf.usi.ch/safari.

4.5.1 Related publications

The results reported in this chapter have been published in the following papers:

• F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. SA-

FARI: SMT-Based Abstraction for Arrays with Interpolants. In P. Mad-

husudan and S.A. Seshia, editors, Computer Aided Verification - 24th

International Conference, CAV 2012, Berkeley, CA, USA, July 7-13,

2012 Proceedings, volume 7358 of Lecture Notes in Computer Science.

Springer, 2012.

• F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina.

An extension of lazy abstraction with interpolation for programs with

arrays. Formal Methods in System Design, 45(1):63–109, 2014.

http://verify.inf.usi.ch/safari

84 SMT-based Abstraction For Arrays with Refinement by Interpolation

Pb. (l,n,q) status NoA NoH cm ta cmta

Timings [Time out = 3600] (in seconds)
D01 (2,0,0) safe x - - 0.36 0.38
D02 (2,0,0) safe x - - 0.39 0.28
D03 (2,0,0) safe x - - 0.37 0.52
D04 (2,0,0) unsafe 3.92 0.51 0.30 0.18 0.28
D06 (2,0,0) unsafe x - - 2.68 0.78
D08 (2,0,0) safe x - - 0.36 0.50
D09 (2,0,0) safe x - - 0.50 0.40
D11 (2,0,0) unsafe 1.54 0.35 0.28 1.53 1.02
D13 (2,0,0) unsafe 0.45 0.42 0.34 0.33 0.45
D14† (4,0,0) safe x - - 1.60 1.06
D15 (4,0,0) unsafe 2.62 1.60 1.33 1.46 1.56
D16† (5,0,0) safe x - - 2.22 1.10
D17 (2,0,0) safe x 0.72 0.80 x 0.68
D20 (2,0,0) safe x - - 0.81 0.47
QD01 (1,0,1) safe x x x 0.38 0.39
QD02 (1,0,1) safe x x x 0.43 0.35
QD03 (1,0,1) safe x x x 0.36 0.38
QD04 (1,0,1) unsafe 0.34 0 1.44 0.31 0.37
QD08 (1,0,1) safe x x x 0.36 0.21
QD09 (1,0,1) safe x x x 0.43 0.44
QD11 (1,0,1) unsafe 0.46 0 0.36 0.63 0.58
QD13 (2,0,2) unsafe 0.44 0 0.41 0.61 0.35
QD14† (3,0,1) safe x x x 0.78 0.64
QD15 (3,0,1) unsafe 0.53 4 2.62 1.09 0.94
QD16† (4,0,1) safe x - - 1.38 1.14
QD20 (1,0,1) safe x x x 0.37 0.28

Table 4.1. Experiments on Suite 1: running time for safari with different heuris-
tics turned on and off. A ‘x’ indicates that safari was not able to converge in the
given time out of 1 hour. A ‘-’ indicates that safari was not able to converge with
less than 150 refinements. The examples labeled with † have been pre-processed
with loop fusion, a compiler optimization technique which replaces multiple loops
(iterating over the same range) with a single one when the instructions in the body
of a loop do not interfere with those in the bodies of the others (see, e.g., [Aho
et al., 2007]).

4.5 Summary 85

Pb. (l,n,q) status NoA NoH cm ta cmta
Number of refinements [Maximum = 150]

D01 (2,0,0) safe x - - 5 3
D02 (2,0,0) safe x - - 5 3
D03 (2,0,0) safe x - - 5 3
D04 (2,0,0) unsafe 0 0 0 0 0
D06 (2,0,0) unsafe x - - 2 2
D08 (2,0,0) safe x - - 5 3
D09 (2,0,0) safe x - - 5 3
D11 (2,0,0) unsafe 0 0 0 0 0
D13 (2,0,0) unsafe 0 0 0 0 0
D14† (4,0,0) safe x - - 8 8
D15 (4,0,0) unsafe 0 6 4 9 9
D16† (5,0,0) safe x - - 18 14
D17 (2,0,0) safe x 3 3 x 4
D20 (2,0,0) safe x - - 5 3
QD01 (1,0,1) safe x x x 2 2
QD02 (1,0,1) safe x x x 2 2
QD03 (1,0,1) safe x x x 2 2
QD04 (1,0,1) unsafe 0 0 0 0 0
QD08 (1,0,1) safe x x x 2 2
QD09 (1,0,1) safe x x x 2 2
QD11 (1,0,1) unsafe 0 0 0 0 0
QD13 (2,0,2) unsafe 0 0 0 0 0
QD14† (3,0,1) safe x x x 6 6
QD15 (3,0,1) unsafe 0 4 3 7 7
QD16† (4,0,1) safe x - - 12 12
QD20 (1,0,1) safe x x x 2 2

Table 4.2. Experiments on Suite 1: number of refinements required by safari
with different heuristics turned on and off. A ‘x’ indicates that safari was not
able to converge in the given time out of 1 hour. A ‘-’ indicates that safari was
not able to converge with less than 150 refinements. The examples labeled with †

have been pre-processed with loop fusion, a compiler optimization technique which
replaces multiple loops (iterating over the same range) with a single one when the
instructions in the body of a loop do not interfere with those in the bodies of the
others (see, e.g., [Aho et al., 2007]).

86 SMT-based Abstraction For Arrays with Refinement by Interpolation

safe unsafe
Pb. (l,n,q) NoH cm ta cmta NoA NoH cm ta cmta

Timings [Time out = 3600] (in seconds)
binarySort (3,1,2) - 0.93 4.20 2.81 3.95 27.22 - 8.26 6.53
bubbleSort (2,1,2) - - 1.20 0.97 1.04 14.73 13.84 8.89 8.26
comp (1,0,1) x x 0.25 0.40 0.32 0.36 0.39 0.34 0.40
compM (1,0,1) x x 0.67 0.53 0.38 0.49 0.58 0.36 0.48
copy (1,0,1) x x 1.58 0.23 0.28 0.29 0.41 0.19 0.34
copy2 (2,0,1) - - x 0.61 0.33 0.44 0.49 0.33 0.45
copy3 (3,0,1) - - x 1.02 0.39 0.57 0.67 0.51 0.57
copy4 (4,0,1) - - x 1.77 0.45 0.89 0.88 0.64 0.78
copy5 (5,0,1) - - x 3.47 0.50 1.19 1.15 0.83 0.98
copy6 (6,0,1) - - x 6.73 0.57 1.56 1.52 1.20 1.22
copy7 (7,0,1) - - x 9.27 0.64 2.13 1.93 1.23 1.51
copy8 (8,0,1) - - x 15.89 0.67 2.81 2.48 1.40 1.76
copy9 (9,0,1) - - x 24.84 0.72 3.36 3.14 1.71 2.17
copy10 (10,0,1) - - x 36.45 0.80 4.84 3.92 2.59 2.57
find (1,0,1) x x 0.42 0.60 0.28 0.23 0.34 0.21 0.36
findTest (2,0,0) x - 1.33 1.22 0.41 0.63 1.36 0.59 0.85
heapArr (1,0,0) 5.56 3.85 0.80 0.88 0.34 0.75 0.85 0.31 0.51
init (1,0,1) x x 0.37 0.30 0.29 0.17 0.28 0.17 0.31
initTest (2,0,0) - - x 1.53 0.35 0.40 0.54 0.26 0.42
maxInArr (1,0,1) - - 0.43 0.30 0.29 0.29 0.42 0.23 0.38
minInArr (1,0,1) - - 0.43 0.46 0.29 0.30 0.42 0.23 0.39
nonDisj (1,0,2) - - 0.60 0.70 0.55 0.59 0.69 0.54 0.76
partition (1,0,1) x x 0.48 0.53 2.24 1.81 1.86 0.38 0.61
running (2,0,0) x x 0.92 0.87 0.28 0.44 0.47 0.29 0.46
vararg (1,0,1) x x 0.44 0.46 0.19 0.27 0.30 0.21 0.35

Table 4.3. Experiments on Suite 2: running time for safari with different
heuristics turned on and off. A ‘x’ indicates that safari was not able to converge
in the given time out of 1 hour. A ‘-’ indicates that safari was not able to
converge in less than 150 refinements. We do not report the column NoA for safe
problems since safari always diverges on them when abstraction is disabled.

4.5 Summary 87

safe unsafe
Pb. (l,n,q) NoH cm ta cmta NoA NoH cm ta cmta

Number of refinements [Maximum = 150]
binarySort (3,1,2) - 7 21 21 0 61 - 6 6
bubbleSort (2,1,2) - - 5 5 0 39 39 14 14
comp (1,0,1) x x 2 2 0 1 1 1 1
compM (1,0,1) x x 4 4 0 3 3 2 2
copy (1,0,1) x x 2 2 0 2 2 1 1
copy2 (2,0,1) - - x 6 0 2 2 2 2
copy3 (3,0,1) - - x 12 0 3 3 3 3
copy4 (4,0,1) - - x 20 0 4 4 4 4
copy5 (5,0,1) - - x 30 0 5 5 5 5
copy6 (6,0,1) - - x 42 0 6 6 6 6
copy7 (7,0,1) - - x 56 0 7 7 7 7
copy8 (8,0,1) - - x 72 0 8 8 8 8
copy9 (9,0,1) - - x 90 0 9 9 9 9
copy10 (10,0,1) - - x 110 0 10 10 10 10
find (1,0,1) x x 3 4 0 1 1 1 1
findTest (2,0,0) x - 14 19 0 6 13 8 8
heapArr (1,0,0) 68 54 9 9 0 9 9 4 4
init (1,0,1) x x 2 2 0 0 0 0 0
initTest (2,0,0) - - x 11 0 3 3 1 1
maxInArr (1,0,1) - - 3 3 0 2 2 2 2
minInArr (1,0,1) - - 3 3 0 2 2 2 2
nonDisj (1,0,2) - - 0 0 0 4 4 5 5
partition (1,0,1) x x 1 1 0 7 7 2 2
running (2,0,0) x x 6 10 0 2 2 3 3
vararg (1,0,1) x x 4 4 0 1 1 2 2

Table 4.4. Experiments on Suite 2: number of refinements required by safari
with different heuristics turned on and off. A ‘x’ indicates that safari was not
able to converge in the given time out of 1 hour. A ‘-’ indicates that safari was
not able to converge in less than 150 refinements. We do not report the column
NoA for safe problems since safari always diverges on them when abstraction is
disabled.

88 SMT-based Abstraction For Arrays with Refinement by Interpolation

Chapter 5

Acceleration techniques for
relations over arrays

This chapter is devoted to the presentation of techniques for computing the

acceleration of transition relations with arrays. Acceleration is a well-known

approach in model-checking. It requires to compute the transitive closure of re-

lations expressing the system evolution and it is exploited to compute precisely

the set of reachable states of a transition system. That is, given a transition

system ST = (v, linit, lerror, T) and the acceleration of T , usually denoted with

T ∗, we can compute the precise set of states reachable by ST . This is repre-

sented by the post-image of linit with respect to T ∗. Once this formula, say

R(v), has been computed we can check whether R(v) intersects with the error

location and infer the safety of ST . This check can be performed by testing

the T -satisfiability of R(v) ∧ pc = lerror.

This strategy for solving the reachability analysis problem may work for a

class of systems with integer variables, as shown for example in [Bozga et al.,

2014], but does not work in general for those handling arrays. The reason is

the following. Transitive closure is a logical construct that is far beyond first

order logic: either infinite disjunctions or higher order quantifiers or, at least,

fixpoint operators are required to express it. Indeed, due to the compactness

of first order logic, transitive closure (even modulo the axioms of a first order

theory) is first-order definable only in trivial cases. For expressive formalisms

like the aforementioned ones, it is problematic to find efficient solvers (if any

at all), which can be used in verification. This implies that even if we would

be able to express T ∗, the safety test R(v) ∧ pc = lerror would be undecidable,

nullifying the benefits of acceleration.

To address this problem, it is required first to identify constrained classes

89

90 Acceleration techniques for relations over arrays

of relations, from a syntactic point of view, admitting a definable transitive

closure within a suitable first-order theory. The approach of [Bozga et al.,

2014], for example, builds on the fact that loops represented by (conjunction

of) octagonal relations, i.e., relations of the kind ±x ± y ≤ c have definable

acceleration within LIA [Bozga et al., 2009a]. This fact combined with some

requirements on the control-flow structure of the program allow to show that

the reachability problem for a class of programs with integer variables is de-

cidable.

Recall that in this thesis we defined a theory as a pair made by a signature Σ

and a class of Σ-structures C (see Definition 2.1.8). Such definition is different

from the classical one where a theory is identified as a set of axioms (see,

e.g., [Mendelson, 1997]). By taking a theory as a class of structures the property

of compactness fails, and it might well happen that transitive closure becomes

first-order definable (the first order definition being valid just inside the class

C - which is often reduced to a single structure).

The contributions of this chapter are the following:

• We show that inside the combined theory of Presburger arithmetic aug-

mented with free function symbols, the acceleration of some classes of

relations – corresponding, in our application domain, to relations involv-

ing arrays and counters – can be expressed in first order language. This

result comes at a price to allow nested quantifiers.

• The nested quantification introduced by the acceleration procedure can

be problematic in practical applications. To address this complication

we show how to take care of the quantifiers added by the acceleration

procedure: the idea is to import in this setting the so-called monotonic

abstraction technique [Abdulla et al., 2007b,Abdulla et al., 2007a]. Such

technique has been reinterpreted and analyzed in a declarative context

in [Alberti et al., 2012d]: from a logical point of view, it amounts to a

restricted form of instantiation for universal quantifiers.

• We show that acceleration can be effectively used to check the safety of

programs with arrays. In particular, as discussed in Chapter 3, one of

the biggest problems in verifying safety properties of array programs is

designing procedures for the synthesis of relevant quantified predicates.

In typical sequential programs, the guarded assignments used to model

the program instructions are ground and, as a consequence, the formulæ

representing backward reachable states are ground too. However, the

5.1 SMT-based backward reachability 91

invariants required to certify the safety of such programs contain quanti-

fiers. Our acceleration procedure is able to supply the required quantified

predicates.

We also conjecture that acceleration and abstraction are orthogonal techniques,

in the sense that they offers two different ways for achieving the same goal.

Having different strengths and weaknesses, their combination likely lead to a

framework overcoming their individual limitations.

5.1 SMT-based backward reachability

We assume the notions introduced in section 2.3, and fix T to be the theory of

array obtained by enriching the signature of LIA with free function symbols

and free constants. As a consequence, when we speak about validity or satisfi-

ability of a formula, we mean satisfiability and validity in all structures having

the standard structure of natural numbers as reduct.

5.1.1 Backward reachability

Backward reachability is a standard procedure for checking the safety of a tran-

sition system ST . As we did in chapter 3, we are now presenting a backward

reachability procedure that will be used in the remaining part of the chap-

ter. The procedure is given in Figure 5.1. It is fed with a transition system

ST = (v, linit, lerror, T), as defined in section 2.3. It explores, through symbolic

representation, all states leading to the error location lerror in one step, then in

two steps, in three steps, etc. until either we find a fixpoint or until we reach

linit. Similarly to the solution presented in chapter 3, it is convenient to arrange

the explored state-space in a tree: the tree has arcs labeled by transitions and

nodes labeled by formulæ over v. Leaves of the tree are labeled as ‘checked’,

‘unchecked’ or ‘covered’. The tree is built according to the rules of the BReach

procedure of Figure 5.1.

Termination of BReach is triggered by two events. The first arises if the

safety test succeeds. In this case the transition system ST is unsafe. In the

second case, all the leaves are flagged as ‘covered’. This happens because at

some point, all the nodes generated are labeled with formulæ that are covered

by the other nodes. As discussed in section 2.2.1, the satisfiability of the safety

and fixpoint check depends on the shape (e.g., presence of quantifiers) of the

checked formulæ. The presence of formulæ falling outside decidable classes in

the fixpoint test might prevent the termination of the algorithm when executed

92 Acceleration techniques for relations over arrays

BReach

Initialization: a single node tree labeled by pc = lerror and is marked
‘unchecked’.

Check: pick an unchecked leaf L labeled with K. If K∧pc = linit is satisfiable
(‘safety test’), exit and return unsafe. If it is not satisfiable, check whether
there is a set C of uncovered nodes such that (i) L 6∈ C and (ii) K is
inconsistent with the conjunction of the negations of the formulæ labeling
the nodes in C (‘fixpoint check’). If it is so, mark L as ‘covered’ (by C).
Otherwise, mark L as ‘checked’.

Expansion: pick a checked leaf L labeled with K. For each transition
τi ∈ T , add a new leaf below L labeled with Pre(τi, L) and marked
as ‘unchecked’. The arc between L and the new leaf is labeled with τi.

Safety Exit: if all leaves are covered, exit and return safe.

Figure 5.1. The BReach backward reachability procedure.

on safe transition systems. Not being able to check the safety test, instead,

might compromise the ability of BReach to check even the unsafety of any

transition system, turning BReach into a useless procedure.

When acceleration comes into play, this last scenario becomes feasible. This

means that suitable countermeasures have to be taken in order to allow at least

sound solutions.

5.1.2 Classification of sentences and transitions

BReach represents the set of the backward reachable configurations of ST =

(v, linit, lerror, T) with formulæ. Recall from section 2.3 that v = 〈a, s, pc〉 where

a is a tuple of array variables and s a tuple of scalar variables. We classify such

formulæ into three classes:

- ground sentences, i.e., sentences of the kind φ(v);

- Σ0
1-sentences, i.e., sentences of the form ∃i. φ(i,v);

- Σ0
2-sentences, i.e., sentences of the form ∃i ∀j. φ(i, j,v).

We remark that in our context satisfiability can be fully decided only for

ground sentences and Σ0
1-sentences (see the results in section 2.2.1), while only

5.1 SMT-based backward reachability 93

subclasses of Σ0
2-sentences admit a decision procedure, e.g., those discussed

in [Bradley et al., 2006,Ge and de Moura, 2009].

A classification of transition formulæ will also be needed in this chapter.

We classify transition formulæ in three groups:

- ground assignments, i.e., transitions of the form

pc = l ∧ φL(s, a) ∧ pc′ = l′ ∧ a′ = λj. G(s, a, j) ∧ s′ = H(s, a) (5.1)

- Σ0
1-assignments, i.e., transitions of the form

∃k

(
pc = l ∧ φL(s, a, k) ∧ pc′ = l′ ∧
a′ = λj. G(s, a, k, j) ∧ s′ = H(s, a, k)

)
(5.2)

- Σ0
2-assignments, i.e., transitions of the form

∃k

(
pc = l ∧ φL(s, a, k) ∧ ∀j ψU(s, a, k, j) ∧

pc′ = l′ ∧ a′ = λj. G(s, a, k, j) ∧ s′ = H(s, a, k)

)
(5.3)

where, as usual, G = G1, . . . , Gs, H = H1, . . . , Ht are tuples of case-defined

functions.

Definition 5.1.1 (Acceleration). The composition τ1 ◦ τ2 of two transitions

τ1(v,v′) and τ2(v,v′) is expressed by the formula ∃v1(τ1(v,v1) ∧ τ2(v1,v
′)).

The n-th composition of a transition τ(v,v′) with itself is recursively defined

by τ 1 := τ and τn+1 := τ ◦ τn. The acceleration of τ is
∨
n≥1 τ

n.

We also recall the definition of preimage: the preimage of a formula α(v)

with respect to a transition τ(v,v′) is represented by the formula

Pre(τ, α) ≡ ∃v′. (τ(v,v′) ∧ α(v′)) . (3.2)

The following proposition is proved by straightforward syntactic manipulations:

Proposition 5.1.1. Let τ, τ1, τ2 be transition formulæ and let K(v) be a for-

mula. We have that: (i) if τ1, τ2, τ,K are ground, then τ1 ◦ τ2 is a ground

assignment and Pre(τ,K) is a ground formula; (ii) if τ1, τ2, τ,K are Σ0
1, then

τ1 ◦ τ2 is a Σ0
1-assignment and Pre(τ,K) is a Σ0

1-sentence; (iii) if τ1, τ2, τ,K

are Σ0
2, then τ1 ◦ τ2 is a Σ0

2-assignment and Pre(τ,K) is a Σ0
2-sentence.

94 Acceleration techniques for relations over arrays

procedure Reverse (I[N + 1]; O[N + 1]){
c = 0;

while (c 6= N + 1) {
O[c] = I[N − c];
c = c+ 1;

}
assert (∀x ≥ 0, y ≥ 0(x+ y = N → I[x] = O[y]))

}

Figure 5.2. A function for reversing the elements of an array I into another array
O.

In our application domain, transitions are generally ground assignments or,

at most, Σ0
1-assignments, as a result of translating the violation of universally

quantified assertions. In this case BReach generates only Σ0
1-formulæ and

completeness of safety tests is guaranteed by the fact that satisfiability of Σ0
1-

formulæ is decidable via Skolemization and then the application of the results

of section 2.2.1. From this consideration, the following fact holds:

Theorem 5.1.1. BReach is partially correct1 for transition systems whose

transitions are either ground assignments or Σ0
1-assignments.

For fixpoint tests the situation is different. The generation of Σ0
1-formulæ

during the backward reachability analysis implies that these tests reduce to

the T -satisfiability of Σ0
2-formulæ. This problem has been already analyzed in

section 4.1.3, where we identified several practical heuristics to tackle it. In

any case, given the general undecidability of this class of formulæ (recall the

discussion of section 2.2.2), the adoption of sound but incomplete algorithms

may, therefore, compromise the termination of BReach, but not correctness

of the answer.

Divergence phenomena are not only caused by the incompleteness of fix-

point tests, though. In fact, divergence persists even in cases where fixpoint

tests are precise, as we will show in the example below. One source of diver-

gence is the fact that we are unable to compute “in one shot” the effect of

1Partially correctness means that when the procedure terminates it gives a correct infor-
mation about the safety of the input array-based transition system.

5.1 SMT-based backward reachability 95

executing finitely many times a given sequence of transitions. Acceleration can

solve this problem.

Example 5.1.1. Consider the procedure Reverse of Figure 5.2. This proce-

dure can be represented by the array-based transition system STA = (v, l0, l3, T),

where TA is the combination of the theory ARR1(LIA) to which we added a con-

stant N , and a single-sorted enumerated data-type theory which unique sort

is interpreted over {l0, l1, l2, l3}. v := 〈I, O, c, pc〉. The sort of pc is interpreted

over the set {l0, l1, l2, l3}. T contains the following transitions:

τ0(v,v′) ≡ pc = l0 ∧ pc′ = l1 ∧ c′ = 0

τ1(v,v′) ≡ pc = l1 ∧ c 6= N + 1 ∧ c′ = c+ 1 ∧O′ = store(O, c, I(N − c))
τ2(v,v′) ≡ pc = l1 ∧ c = N + 1 ∧ pc′ = l2

τ3(v,v′) ≡ pc = l2 ∧ ∃z1 ≥ 0, z2 ≥ 0 (z1 + z2 = N ∧ I(z1) 6= O(z2)) ∧ pc′ = l3 .

Recall from section 2.2.3 that store(b, i, e) abbreviates the expression λj.if (j =

i) then e else b[j].

If we apply the BReach procedure on this example, we get an infinite

labeled unwinding with a branch whose nodes - after routine simplifications -

are labeled as follows:

(K) pc = l3

(K ′) pc = l2 ∧ ∃z1, z2 ψ(z1, z2)

(K ′′) pc = l1 ∧ ∃z1, z2 ψ(z1, z2) ∧ c = N + 1

(K0) pc = l1 ∧ ∃z1, z2 ψ(z1, z2) ∧ c = N ∧ z2 6= N

(K1) pc = l1 ∧ ∃z1, z2 ψ(z1, z2) ∧ c = N − 1 ∧ z2 6= N ∧ z2 6= N − 1

· · ·
(Ki) pc = l1 ∧ ∃z1, z2 ψ(z1, z2) ∧ c = N − i ∧ z2 6= N ∧ · · · ∧ z2 6= N − i

· · ·

where ψ(z1, z2) stands for z1 ≥ 0 ∧ z2 ≥ 0 ∧ z1 + z2 = N ∧ I(z1) 6= O(z2).

We can explain the divergence phenomenon as follows. BReach assumes,

by “refutation”, that the error location can be reached and tries to build a

counterexample. Let x and y be the position of the array I and O such that

I[x] 6= O[y] and x + y = N . Unwinding the transition relation in a backward

fashion results in checking all the positions of the array before x, starting from

z0 = N, z1 = N − 1, z2 = N − 2, . . . , zk = N − k, Such procedure never

terminates since “we can always add” one position between the last zk checked

96 Acceleration techniques for relations over arrays

and x.

5.2 Definability of Accelerated Relations

Acceleration can be of great help in limiting divergence of reachability analysis.

As stated in Definition 5.1.1, acceleration can be expressed by using infinite

disjunctions. In this section we investigate the existence of a class of relations

over arrays for which the infinite disjunction is equivalent, modulo T , to a first-

order formula built over the signature of T . That is, we want to characterize a

class of τ ’s that is both of practical use and for which it is effectively computable

a transition τ+ such that

T |= ∀v,v′.τ+(v,v′) ↔
∨
n≥1

τn(v,v′)

Recall that in this thesis we defined a theory T as a pair (Σ, C) comprising

a signature and a class of Σ-structures, the models of T . This definition is not

equivalent to the one given in standard textbooks (e.g., [Mendelson, 1997]).

Indeed, by taking a theory as a set of first-order sentences (the axioms of the

theory), compactness holds, and by consequence the following fact:

Theorem 5.2.1. Let Σ be a signature, T be a set of Σ-sentences and φ, ψn
some Σ-sentences. Then,

T |= φ↔
∨
n≥0

ψn

iff exists an N such that

T |= φ↔
∨
n≤N

ψn

Proof. One side of the proof is trivial. For the other side, let us suppose that

for any N , T ∪{¬ψn}n≤N is consistent. By compactness, T ∪{¬ψn}n≥0 is also

consistent. It follows that T 6|= φ ↔
∨
n≥0 ψn because there exists a model of

T falsifying all the ψn.

5.2.1 Iterators, selectors and local ground assignments

The first two ingredients we need to supply a useful format to compute acceler-

ated transitions are iterators and selectors. The intuition here is that we need

to model how the scalars used to index the arrays are (i) updated and (ii) used

to index the arrays.

5.2 Definability of Accelerated Relations 97

Iterators are meant to formalize the notion of a counter scanning the indexes

of an array: the most simple iterators are increments and decrements, but one

may also build more complex ones for different scans. We need to handle tuples

of terms because we want to consider the case in which we deal with different

arrays with possibly different scanning variables.

Given a m-tuple of terms

u(x) := u1(x1, . . . , xm), . . . , um(x1, . . . , xm) (5.4)

containing the m variables x = x1, . . . , xm, we indicate with un the term ex-

pressing the n-times composition of (the function denoted by) u with itself.

Formally, we have u0(x) := x and

un+1(x) := u1(un(x)), . . . , um(un(x)) .

Definition 5.2.1 (Iterators). A tuple of terms u like (5.4) is said to be an

iterator iff there exists an m-tuple of m+ 1-ary terms

u∗(x, y) := u∗1(x1, . . . , xm, y), . . . , u∗m(x1, . . . , xm, y) (5.5)

such that for any natural number n it happens that the formula

un(x) = u∗(x, n̄) (5.6)

is valid.2

The second notion we need is that of selectors.

Definition 5.2.2 (Selectors). Given an iterator u, we say that an m-ary term

κ(x1, . . . , xm) is a selector for u iff there is an m+ 1-ary term ι(x1, . . . , xm, y)

yielding the validity of the formula

z = κ(u∗(x, y))→ y = ι(x, z) . (5.7)

The term κ is a selector function that selects (and possibly modifies) one of

the u; in most applications (though not always) κ is a projection, represented

as a variable xi (for 1 ≤ i ≤ m), so that κ(u∗(x, y)) is just the i-th component

u∗i (x, y) of the tuple of terms u∗(x, y). In these cases, the formula (5.7) reads

as

z = u∗i (x, y)→ y = ι(x, z) . (5.8)

2Recall that n̄ is the numeral of n, i.e. it is sn(0).

98 Acceleration techniques for relations over arrays

The meaning of condition (5.7) is that, once the input x and the selected

output z are known, it is possible to identify uniquely (through ι) the number of

iterations y that are needed to get z by applying κ to u∗(x, y). That is, in order

to compute the acceleration of a transition handling array variables we need to

know whether a given cell can be reached by a scalar variable within a given

number of iterations. The number ι(x, z) gives “the only possible candidate”

y number of iterations. z = κ(u∗(x, y)) checks if the candidate y is correct.

Example 5.2.1. The canonical example is when we have m = 1 and u :=

u1(x1) := x1 + 1; this is an iterator with u∗1(x1, y) := x1 + y; as a selector, we

can take κ(x1) := x1 and ι(x1, z) := z − x1.

Example 5.2.2. The previous example can be modified, by choosing u to be

x1 + n̄, for some integer n 6= 0: then we have u∗(x1, y) := x1 +n ·y, κ(x1) := x1,

and ι(x1, z) = (z−x1)/n where / is integer division (recall that integer division

by a given n is definable in Presburger arithmetic).

Example 5.2.3. If we move to more expressive arithmetic theories, like Primi-

tive Recursive Arithmetic (where we have a symbol for every primitive recursive

function), we can get much more examples. As an example with m > 1, we can

take u := x1 +x2, x2 and get u∗1(x1, x2, y) = x1 + y ·x2, u∗2(x1, x2, y) = x2. Here

a selector is for instance κ1(x1, x2) := 7̄+x1, ι(x1, x2, z) := (z−x1− 7̄)/x2.

Example 5.2.4. Consider the loop

while (true) {a[i] = e; i = i+ 2; }

For this loop, the iterator is u(i) := i + 2 and u∗(i, y) = i + 2y. Moreover

κ(x) := x and ι(i, z) := (z − i)/2.

Suppose i takes the value 3 before entering the loop, and we want to check

if a[7] can be reached in at most 3 iterations. We can compute the result of

ι(i, z) = (7− 3)/2, i.e., 2, and then check if in two iterations we actually reach

a[7] with the formula u∗(i, 2) = 3 + 2 · 2. Given that 3 + 2 · 2 = 7, we know

that in two iterations we reach position 7.

On the contrary, suppose that i starts from 3 and we want to check if a[6] can

be reached in at most 3 iterations. Once again we compute ι(i, z) = (6− 3)/2,

from which we obtain that 1 is the candidate number of iterations that we

have to reach a[6]. By checking the correctness of this result we obtain that

u∗(i, 1) = 3+2 ·1 = 5. This means that a[6] cannot be reached if we start from

i = 3.

5.2 Definability of Accelerated Relations 99

5.2.2 Accelerating local ground assignments

Given an array-based transition system ST we can now look for conditions on

transitions from T allowing to find their definable acceleration modulo T .

Given an iterator u(x), a selector assignment for a := a1, . . . , ar (relative

to u) is a tuple of selectors κ := κ1, . . . , κr for u.

Definition 5.2.3 (Purely arithmetical formulæ). A formula ψ (resp. a term

t) is said to be purely arithmetical over a finite set of terms V iff it is obtained

from a formula (resp. a term) not containing the extra free function symbols

a, s by replacing some free variables in it by terms from V .

Let v = v1, . . . , vr and w = w1, . . . , wr be r-tuples of terms; below store(a,v,w)

indicates the tuples store(a1, v1, w1), . . . , store(ar, vr, wr).

Definition 5.2.4 (Local ground assignments). A local ground assignment is

a ground assignment of the form

pc = l ∧ φL(s, a) ∧ pc′ = l ∧ a′ = store(a, κ(s̃), t(s, a)) ∧ s̃′ = u(s̃) ∧ z′ = z

(5.9)

where

(i) s = s̃, z;

(ii) u = u1, . . . , u|s̃| is an iterator;

(iii) the terms κ are a selector assignment for a relative to u;

(iv) the formula φL(s, a) and the terms t(s, a) are purely arithmetical over the

set of terms {s, a(κ(s̃))} ∪ {ai(zj)}1≤i≤r,1≤j≤|z|;

(v) the guard φL contains the conjuncts κi(s̃) 6= zj, for 1 ≤ i ≤ r and

1 ≤ j ≤ |z|.

Thus in a local ground assignment, there are various restrictions:

(a) the numerical variables are split into ‘idle’ variables z and variables s̃ sub-

ject to update via an iterator u;

(b) the program counter is not modified;

(c) the guard does not depend on the values of the ai at cells different from

κi(s̃), z;

100 Acceleration techniques for relations over arrays

(d) the update of the a are simultaneous writing operations modifying only

the entries κ(s̃).

Thus, the assignment is local and the relevant modifications it makes are deter-

mined by the selector locations. The ‘idle’ variables z are useful to accelerate

branches of nested loops; the inequalities mentioned in (v) are automatically

generated by making case distinctions in assignment guards.

Example 5.2.5. Consider again the procedure Reverse discussed in Exam-

ple 5.1.1. The only candidate transition to be accelerated is τ1, i.e.,

pc = l1 ∧ c 6= N + 1 ∧ pc′ = 2 ∧ c′ = c+ 1 ∧ I ′ = I ∧O′ = store(O, c, I(N − c))

We have z = ∅ and s̃ = c and a = I, O. The counter c is incremented by 1

at each application of τ2. Thus, our iterator is u := x1 + 1 and the selector

assignment assigns κ1 := N − x1 to I and κ2 := x1 to O. This way, I is

modified (identically) at N − c via I ′ = store(I,N − c, I(N − c)) and O is

modified at c via O′ = store(O, c, I(N − c)). The guard τ2 is c 6= N + 1. Since

the formula c 6= N + 1 and the term I(N − c) are purely arithmetical over

{c, I(N − c), O(c)}, we conclude that τ1 is a local ground assignment.

Before showing that local ground assignments admit definable acceleration,

we prove the following lemma.

Lemma 5.2.1. If τ is a local ground assignment, τn can be expressed as fol-

lows3∧
0≤k<n

φ̃L(u∗(s̃, k̄), z, a(κ(u∗(s̃, k̄))), a[z]) ∧ s̃′ = u∗(s̃, n̄) ∧ a′ = λj. F (s, a, n̄, j)

(5.10)

where the tuple F = F1, . . . , Fr of definable functions is given by

Fh(s, a, y, j) = if 0 ≤ ιh(s̃, j) < y ∧ j = κh(u
∗(s, ιh(s̃, j))) then

t̃h(u
∗(s̃, ιh(s̃, j)), z, a(κ(u∗(s̃, ιh(s̃, j)))), a[z]) else ah[j]

(5.11)

for h = 1, . . . , r (here ι1, . . . , ιr are the terms corresponding to κ1, . . . , κr ac-

cording to the definition of a selector for the iterator u).

Proof. For n = 1, notice that φ̃L(u∗(s̃, 0), z, a(κ(u∗(s̃, 0))), a[z]) is equivalent

to φ̃L(s̃, z, a(κ(s̃)), a[z]), that s̃′ = u∗(s̃, 1̄) is equivalent to s̃′ = u(s̃) and

3We omit here and below the conjuncts pc = l∧pc′ = l∧z′ = z that do not play any role.

5.2 Definability of Accelerated Relations 101

that λj. F (s̃, z, a, 1̄, j) = store(a, κ(s̃), t(s̃, z, a(κ(s̃)), a[z])) holds (the latter

because for every h, ιh(s̃, j) = 0 ∧ j = κh(u
∗(s, ιh(s̃, j)) is equivalent to

j = κh(u
∗(s̃, 0)) = κh(s̃) by (5.8)).

For the induction step, we suppose that Lemma 5.2.1 holds for n and show

it for n + 1. As a preliminary remark, notice that from (5.9), we get not

only z′ = z, but also a′[z′] = a[z], because of (v) of Definition 5.2.4. As a

consequence, after n iterations of τ , the values z, a[z] are left unchanged; thus,

for notation simplicity, we will not display anymore below the dependence of

φL, t̃ on z, a[z]. We need to show that τ ◦τn matches the required shape (5.10)-

(5.11) with n+ 1 instead of n. After unraveling the definitions, this splits into

three sub-claims, concerning the update of the s, the guard and the update of

the a, respectively:

(i) the equality u(u∗(s̃, n̄)) = u∗(s̃, n+ 1) is valid;

(ii) ∧
0≤k<n

φ̃L(u∗(s̃, k̄), a(κ(u∗(s̃, k̄)))) ∧ φ̃L(u∗(s̃, n), λj. F (s, a, n̄, j)(κ(u∗(s̃, n))))

is equivalent to ∧
0≤k<n+1

φ̃L(u∗(s, k̄), a(κ(u∗(s, k̄))))

(iii)

store(λj. F (s, a, n̄, j), κ(u∗(s̃, n)), t̃(u∗(s̃, n), λj. F (s, a, n̄, j)(κ(u∗(s̃, n̄))))

is the same function as

λj. F (s, a, n+ 1, j)

Statement (i) is trivial, because u(u∗(s̃, n̄)) = u(un(s̃)) = un+1(s̃) = u∗(s̃, n+ 1)

holds by (5.6).

To show (ii), it is sufficient to check that

a(κ(u∗(s̃, n))) = λj. F (s, a, n̄, j)(κ(u∗(s̃, n))) (5.12)

is true. In turn, this follows from (5.11) and the validity of the following

102 Acceleration techniques for relations over arrays

implications (varying h = 1, . . . , r)

ιh(s̃, j) 6= n̄ → j 6= κh(u
∗(s̃, n)) (5.13)

(in fact, ah and Fh can possibly differ only for the j satisfying 0 ≤ ιh(s̃, j) < n̄,

i.e. in particular for the j such that ιh(s̃, j) 6= n). To see why (5.13) is

valid, notice that in view of (5.7), what (5.13) says is that we cannot have

simultaneously both ιh(s̃, j) = n and ιh(s̃, j) = m̄, for some m 6= n: indeed it

is so by the definition of a function.

It remains to prove (iii); in view of (5.12) just shown, we need to check

that store(λj. F (s, a, n̄, j), κ(u∗(s̃, n)), t̃(u∗(s̃, n), a(κ(u∗(s̃, n))))) is the same as

λj. F (s, a, n+ 1, j). For every h = 1, . . . , r, this is split into three cases,

corresponding to the validity check for the three implications:

ih(s̃, j) < n̄→ store(λj. Fh(s, a, n̄, j), κh(u
∗(s̃, n)), t̃h)(j) = Fh(s, a, n+ 1, j)

ih(s̃, j) = n→ store(λj. Fh(s, a, n̄, j), κh(u
∗(s̃, n)), t̃h)(j) = Fh(s, a, n+ 1, j)

ih(s̃, j) > n→ store(λj. Fh(s, a, n̄, j), κh(u
∗(s̃, n)), t̃h)(j) = Fh(s, a, n+ 1, j)

where we wrote simply t̃h instead of t̃h(u
∗(s̃, n), a(κ(u∗(s̃, n)))). However, keep-

ing in mind (5.13) and (5.8), the three implications can be rewritten as follows

(the second one is split into two subcases)

ih(s̃, j) < n̄→ Fh(s, a, n̄, j) = Fh(s, a, n+ 1, j)

ih(s̃, j) = n ∧ j = κh(u
∗(s, ιh(s̃, j)))→ t̃h = Fh(s, a, n+ 1, j)

ih(s̃, j) = n ∧ j 6= κh(u
∗(s, ιh(s̃, j)))→ Fh(s, a, n̄, j) = Fh(s, a, n+ 1, j)

ih(s̃, j) > n→ Fh(s, a, n̄, j) = Fh(s, a, n+ 1, j)

The above four implications all hold by the definitions (5.11) of the Fh.

Theorem 5.2.2. If τ is a local ground assignment, then τ+ is a Σ0
2-assignment.

Proof. As a preliminary observation, we notice that the bi-implications of the

kind ∨
n≥0

ψ(x, n̄) ↔ ∃y (y ≥ 0 ∧ ψ(x, y)) (5.14)

are valid because we interpret our formulæ in the standard structure of natural

numbers (enriched with extra free symbols).

As a second preliminary observation, we notice that (5.7) can be equiva-

5.2 Definability of Accelerated Relations 103

lently re-written in the form of a bi-implication as:

z = κ(u∗(x, y)) ↔ [y = ι(x, z) ∧ z = κ(u∗(x, ι(x, z)))] (5.15)

(to see why (5.15) is equivalent to (5.7) it is sufficient to apply the logical laws

of pure identity).

Let us fix a local ground assignment of the form (5.9); let a[z] indicate the

r · |z|-tuple of terms {ai(zj)}1≤i≤r,1≤j≤|z|; since φL and t are purely arithmetical

over {s̃, z, a(κ(s̃)), a[z]}, we have that they can be written as φ̃L(s̃, z, a(κ(s̃)), a[z]),

t̃(s̃, z, a(κ(s̃)), a[z]), respectively, where φ̃L, t̃ do not contain occurrences of the

free function and constant symbols a, s.

As a consequence of the Lemma 5.2.1, since the formula∧
0≤k<n

φ̃L(u∗(s̃, k̄), z, a(κ(u∗(s̃, k̄))), a[z])

is equivalent to

∀z (0 ≤ z < n̄→ φ̃L(u∗(s̃, z), z, a(κ(u∗(s, z))), a[z]))

we can use (5.14) to express τ+ as

∃y > 0

(
∀z (0 ≤z< y→ φ̃L(u∗(s̃, z), z, a(κ(u∗(s, z))), a[z])) ∧ z′ = z∧
∧ pc = l ∧ pc′ = l ∧ s̃′ = u∗(s̃, y) ∧ a′ = λj. F (s, a, y, j)

)
(5.16)

The latter shows that τ+ is a Σ0
2-assignment, as desired.

Example 5.2.6. Consider again our Reverse running example and its transition

τ1, i.e.,

pc = l2 ∧ c 6= N + 1∧ pc′ = l2 ∧ c′ = c+ 1∧ I ′ = I ∧O′ = store(O, c, I(N − c)) .

Notice that the variable pc is left unchanged in this transition (this is essential,

otherwise the acceleration gives an inconsistent transition that can never fire).

If we accelerate it, we get the Σ0
2-assignment

∃y > 0

(
pc = 2 ∧ ∀j (c ≤ j < c+ y → j 6= N + 1) ∧ c′ = c+ y ∧
O′ = λj (if c ≤ j < c+ y then I(N − j) else O(j))

)
(5.17)

Paraphrasing this formula, it says: take an integer y greater than 0 (which

represents the arbitrary number of applications of τ1). If all the positions from

104 Acceleration techniques for relations over arrays

c to c+ y − 1 are within the array bounds, i.e., below the upper-bound N , we

can copy at once the content of these positions of I into O in the revert order.

5.2.3 Sub-fragments of acceleratable assignments

From an implementation point of view, the effectiveness of the acceleration

procedure showed in this chapter depends on the availability of a repository of

iterators and selectors.

In many applications it is sufficient to consider a subclass of local ground

assignments. This simplifies things and allows to establish classes of assign-

ments that can be matched more easily and accelerated without requiring big

repositories of iterators and selectors.

For the first subclass we consider, s is a single counter s that is incremented

by one (otherwise said, the iterator is x1 + 1) and the selector assignment is

trivial, namely it is just x1. We call these local ground assignments simple.

Definition 5.2.5 (Simple local ground assignments). Thus, a simple local

ground assignment has the form

pc = l ∧ φL(s, a) ∧ pc′ = l ∧ s′ = s + 1 ∧ a′ = store(a, s, t(s, a)) (5.18)

where the first occurrence of s in store(a, s, t(s, a)) stands in fact for an s-

tuple of terms all identical to s, and where φL, t are purely arithmetical over

the terms s, a1[s], . . . , ar[s].

Proposition 5.2.1. The accelerated transition computed in the proof of The-

orem 5.2.2 for (5.18) can be rewritten as follows:

∃k

(
k > 0 ∧ pc = l ∧ ∀j (s ≤ j < s + k → φL(j, a)) ∧ pc′ = l ∧

∧ s′ = s + k ∧ a′ = λj. (if s ≤ j < s + k then t(j, a) else a[j])

)
(5.19)

Programs with nested loops (e.g., sorting procedures) might need an ex-

tension of simple local ground assignments. This happens when an array is

scanned by a couple of counters, one of which is kept fixed (this is the case

of inner loops of sorting algorithms). To cope with these more complicated

cases, we introduce a larger class of assignments, still local, hence covered by

Theorem 5.2.2).

Definition 5.2.6 (Simple+ local ground assignments). We call simple+ the

5.3 Acceleration-based backward reachability and monotonic abstraction 105

local ground assignments of the form

pc = l ∧ φL(s, z, a) ∧ pc′ = l ∧ s′ = s± 1 ∧ z′ = z ∧ a′ = wr(a, s, t(s, z, a))

(5.20)

where

(i) z = z1, . . . , zq is a tuple of integer constants,

(ii) the first occurrence of s in wr(a, s, t(s, z, a)) stands for a tuple of terms

all identical to s,

(iii) the guard φL contains the conjuncts s 6= zi (1 ≤ i ≤ q), and

(iv) φL, t are purely arithmetical over s, z, a1[s], . . . ar[s], a1[z1], . . . , ar[zq].

Basically, simple+ local ground assignments differ from plain simple ones

just because there are some ‘idle’ indices z; in addition, the counter s can also

be decremented.

Proposition 5.2.2. The accelerated transition for (5.20) computed by Theo-

rem 5.2.2 can be re-written as follows (we write j ∈ [s, s±k] for s ≤ j ≤ s+k

or s − k ≤ j ≤ s, depending on whether we have increment or decrement

in (5.20)):

∃k

(
k > 0 ∧ pc = l ∧ ∀j (j ∈ [s, s± k]→ φL(j, z, a)) ∧ pc′ = l ∧ z′ = z ∧

∧ s′ = s± k ∧ a′ = λj. (if j ∈ [s, s± k] then t(j, z, a) else a[j])

)
(5.21)

Other classes of local ground assignments admitting definable acceleration

that are particularly useful in practice will be introduced in chapter 6.

5.3 Acceleration-based backward reachability and

monotonic abstraction

The particular shape of accelerated transitions, i.e., Σ0
2-sentences, invalidates

the direct application of acceleration in the BReach procedure. The generation

of Σ0
2-formulæ is problematic since they might invalidate both the safety and

the fixpoint tests of the BReach procedure.

Example 5.3.1. Let us again consider the formalization of the Reverse proce-

dure given in Example 5.1.1. Suppose that in a preprocessing step we add the

106 Acceleration techniques for relations over arrays

accelerated transition τ+
1 given by (5.17) to the transitions we already have.

This causes the generation of a new leaf labeled with

∃n, z1, z2

n > 0 ∧ pc = l1 ∧ ∀j.(c ≤ j < c+ n→ j 6= N + 1) ∧
c+ n = N + 1 ∧ z1 ≥ 0 ∧ z2 ≥ 0 ∧ z1 + z2 = N ∧
I(z1) 6= λj.(if c ≤ j < c+ n then I(N − j) else O(j))(z2)

that, simplified, can be rewritten as

∃n, z1, z2

n > 0 ∧ pc = l1 ∧ ∀j.(c ≤ j < c+ n→ j 6= N + 1) ∧
c+ n = N + 1 ∧ z1 ≥ 0 ∧ z2 ≥ 0 ∧ z1 + z2 = N ∧
((c > z2 ∨ z2 ≥ c+ n) ∧ I(z1) 6= O(z2))

The solution we propose is to over-approximate such sentences by adopting

a selective instantiation schema, known in literature as monotonic abstraction.

5.3.1 Monotonic Abstraction

Monotonic abstraction is a technique introduced by P. A. Abdulla et al. in

a series of papers (e.g., [Abdulla et al., 2007a, Abdulla et al., 2007b, Abdulla

et al., 2008b, Abdulla, 2010]), originally applied in the context of verification

of distributed systems. In this section we will briefly describe its origin and

its application in parameterized model-checking. Then we will show how it is

possible to import it in our framework.

In the seminal paper [Abdulla et al., 1996], the authors introduce the notion

of infinite-state systems which are monotonic w.r.t. a well quasi-ordering on the

set of configurations. That is, the set of configurations of a system is endowed

with a well-quasi ordering �, i.e., a reflexive, transitive binary relation that

neither contains infinite strictly decreasing sequences nor infinite sequences of

pairwise incomparable elements, such that � is a simulation with respect to

the transition relation, or, in other words, the transition relation is monotonic

with respect to �. This definition is suitable for checking, via a backward

reachability analysis, the safety of parameterized systems. Set of unsafe states

are represented by an upward closed set K such that, for any state s′, if s ∈ K
and s � s′, then s′ ∈ K. Moreover, monotonicity of the transition relation

with respect to � implies that the pre-image of an upward closed set is still an

upward closed set. Finally, since � is a well-quasi ordering, upward closed sets

can be finitely represented by their finitely many minimal elements.

The notion of array-based transition system ST reinterprets this idea in a

5.3 Acceleration-based backward reachability and monotonic abstraction 107

declarative framework [Ghilardi and Ranise, 2010a]. The nature of T depends

on the application domain where we are working: in parameterized distributed

systems, usually, there is no arithmetic on index sort (processes are just or-

dered) and T is quite simple. In this context, if we view the system variables v

as fresh constants, configurations can be identified with finitely generated mod-

els of T (with generators having all INDEX sort), ordering among configurations

is model-theoretic embeddability and upward closed sets are characterizable via

definability with Σ0
1-sentences. As stated before in Proposition 5.1.1, if the un-

safe formula is represented by a Σ0
1-sentence and transition relations are all

Σ0
1-assignments, BReach can generate only Σ0

1-sentences.

In such a context, a Σ0
1-assignment are used to represent transitions like “if

there are two processes p1 and p2 in location Waiting and p1 has an id smaller

than p2, then p1 can enter the Critical section”. This transition is represented

by the Σ0
1-assignment

∃p1∃p2.(l[p1] = W ∧ l[p2] = W ∧ p1 < p2 ∧ l′ = λj.(if (j = p1) then C else l[j]))

Σ0
1-assignments are not sufficient for representing transitions where a process

has to check the status of all other processes of the system, though. In this

case, Σ0
2-assignments are needed. Consider, for example, a protocol where a

process in the Waiting location enters the Critical section only if its id is lower

than the id of all the other processes in the Waiting section. In this case, the

transition will look like

∃p1.

(
l[p1] = W ∧ ∀pj.(l[pj] = W→ p1 < pj) ∧
l′ = λj.(if (j = p1) then C else l[j])

)

The preimage along Σ0
2-assignments do not yield existential formulæ. This de-

stroys the entire framework, and here is when monotonic abstraction comes

into play. The Σ0
2-sentences obtained as preimages of Σ0

2-assignments are over-

approximated with their monotonic abstraction. In the setting of distributed

systems, applying monotonic abstraction techniques amounts to adopting the

“stopping failures” computational model [Lynch, 1996]. We assume that pro-

cesses can crash at any instant of time and that crashed processes do not

take part anymore to the protocol. In this setting, a Σ0
2-assignment can always

fire, provided the processes violating the universal guard ∀j.ψU(s, a, k, j) crash.

Notably, this transformation can be interpreted as a modification of the under-

lying computational model (we are adopting the “stopping failures” paradigm)

or more simply just as a kind of abstraction. One should be aware that the

108 Acceleration techniques for relations over arrays

modified system has more runs, so safety of the modified system implies safety

of the original one but not vice versa. However, the point is that in the context

of array-based transition system, this monotonic abstraction modification can

be performed at the syntactic level: by using quantifier relativizations and by

adding a “crash” case to the update function G, it is possible to transform a

Σ2
0-assignment into a Σ0

1-assignment4.

Monotonic abstraction has been applied in different application domains

(see e.g. [Abdulla et al., 2008a, Abdulla et al., 2009]). Its reformulation has

been exploited within within the declarative context of array-based transition

systems in order to apply it to the verification of reliable broadcast algorithms

in a fault-tolerant environment [Chandra and Toueg, 1990,Alberti, 2010].

What allows to import monotonic abstraction into the context of this thesis,

i.e., verification of sequential programs with arrays, is the following: the declar-

ative reformulation clearly shows that monotonic abstraction can be viewed op-

erationally as a purely symbolic manipulation applying quantifier instantiation

in order to overapproximate sets of states represented via Σ0
2-sentences.

Definition 5.3.1 (Monotonic abstraction). Let

ψ ≡ ∃i ∀j. φ(i, j, a, s, pc)

be a Σ0
2-sentence and let I be a finite set of terms of the form t(i,v). The

monotonic I-approximation of ψ is the Σ0
1-sentence

∃i
∧

σ:j→I

φ(i, jσ/j, a, s, pc) (5.22)

(here jσ is the tuple of terms σ(j1), . . . , σ(jn), where j = j1, . . . , jn,).

By Definition 5.3.1, universally quantified variables are eliminated through

instantiation; the larger the set I is, the better approximation we get. In

practice, the natural choices for I are i or the set of terms of the kind t(i,v)

occurring in ψ As a result of replacing Σ0
2-sentences by their monotonic ap-

proximation, spurious unsafe traces might occur. However, those can be disre-

garded if accelerated transitions contribute to their generation. This is because

if ST is unsafe, its unsafety can be discovered without considering accelerated

transitions.

4For more information, the interested reader is pointed to [Alberti et al., 2012d].

5.3 Acceleration-based backward reachability and monotonic abstraction 109

5.3.2 An acceleration-based backward reachability procedure

To integrate monotonic abstraction, the BReach procedure is modified as

follows. In a preprocessing step, we analyze the input array-based transition

system, produce accelerated transitions following the procedure described in

section 5.2 and add these transitions to ST .

The procedure BReach is therefore modified in the ABReach proce-

dure (Figure 5.3). It is quite straightforward to see that Proposition 5.1.1

applies to ABReach as well. Notice that, contrarily to what happens in other

acceleration-based approaches for integer variables, e.g., [Bozga et al., 2014], we

do not substitute the “acceleratable” transitions with their accelerated counter-

part, but we add the accelerations to the set T . This is because the pre-images

of Σ0
2-assignment will be over-approximated with their monotonic abstraction.

This process can cause spurious counterexamples. In case of unsafety, the al-

gorithm checks if the counterexample is spurious. If it contains an accelerated

transition τ+, the subtree having as a root the vertex labeled with the mono-

tonic abstraction of the pre-image obtained along τ+ is removed. This implies

that spurious traces containing approximated accelerated transitions cannot

be produced again and again: when the sub-tree D from the target node v of

τ+ is removed by Check’, the node v is not a leaf (the arcs labeled by the

transitions τ are still there), hence it cannot be expanded anymore according

to the Expansion instruction.

Example 5.3.2. We resume from Example 5.3.1. Consider the label of v+
2 ,

i.e., the vertex of the labeled unwinding having as a preimage Pre(τ+
1 ,MV (v1)),

represented by the formula

∃n > 0∃z1, z2

 pc = l2 ∧ ∀j.(c ≤ j < c+ n→ j 6= N + 1) ∧
c+ n = N + 1 ∧ z1 ≥ 0 ∧ z2 ≥ 0 ∧ z1 + z2 = N ∧
I(z1) 6= λj.(if c ≤ j < c+ n then I(N − j) else O(j))(z2)

We approximate using the set of terms I = {z1, z2, n}. After simplifications

we get

∃z1, z2.(pc = l1∧c ≤ N ∧z1 ≥ 0∧z2 ≥ 0∧z1 +z2 = N ∧O(z2) 6= I(z1)∧c > z2)

Generating this formula is enough to allow the convergence of ABReach.

110 Acceleration techniques for relations over arrays

ABReach

Initialization: a single node tree labeled by pc = lE and is marked
‘unchecked’.

Check’: pick an unchecked leaf L labeled by a formula K. If K is a Σ0
2-

sentence, choose a suitable I and replace K by its monotonic abstraction
K ′. If K ′ ∧ pc = lI is inconsistent, mark L as ‘covered’ or ‘checked’
according to the outcome of the fixpoint check, as was done in the original
Check. If K ′ ∧ pc = lI is satisfiable, analyze the path from the root to
L. If no accelerated transition τ+ is found in it return unsafe, otherwise
remove the sub-tree D from the target of τ+ to the leaves. Each node N
covered by a node in D will be flagged as ‘unchecked’ (to make it eligible
in future for the Expansion instruction).

Expansion: pick a checked leaf L labeled with K. For each transition
τi ∈ T , add a new leaf below L labeled with Pre(τi, L) and marked
as ‘unchecked’. The arc between L and the new leaf is labeled with τi.

Safety Exit: if all leaves are covered, exit and return safe.

Figure 5.3. The ABReach backward reachability procedure.

5.4 Experimental evaluation

In this section we show that ABReach, i.e., the backward reachability proce-

dure enhanced to handled Σ0
2-sentences arising as pre-images along accelerated

transitions, is able to check the safety of a set of problems with arrays.

For our experimental evaluation we will exploit the mcmt model-checker

[Alberti et al., 2014d], offering an implementation of ABReach procedure.

Notably, acceleration requires a preprocessing of the input program to com-

pactly represent the transition relation. That is, loops have to be represented

by a single transition. This program representation might be far from the usual

internal representation of the input code generated by standard compilers in-

frastructures (see, e.g., [Aho et al., 2007]). In our case, as we will discuss in

chapter 8, it is beneficial to represent the program as a cutpoint graph [Gurfinkel

et al., 2011]. We are not going into the details of such representation now: the

discussion is delayed to section 8.1.1. Here we only observe that the bench-

marks we are using for our experimental evaluation have been preprocessed by

Booster, the tool we will present in chapter 8. Without this preprocessing

phase, mcmt is not able to converge on any example.

5.4 Experimental evaluation 111

In this section we want to compare the solution presented in chapters 3

and 4 with the acceleration-based approach of this chapter. We take the two

benchmark suites used to evaluate safari. The running times, with timeout

set to 1 hour, are reported in Table 5.1 and Table 5.2.

Pb. (l,n,q) status safari mcmt

D01 (2,0,0) safe 0.38 0.06
D02 (2,0,0) safe 0.28 0.06
D03 (2,0,0) safe 0.52 0.05
D04 (2,0,0) unsafe 0.28 0.04
D06 (2,0,0) unsafe 0.78 0.03
D08 (2,0,0) safe 0.50 0.06
D09 (2,0,0) safe 0.40 0.06
D11 (2,0,0) unsafe 1.02 0.03
D13 (2,0,0) unsafe 0.45 0.08
D14 (4,0,0) safe 1.06 0.40
D15 (4,0,0) unsafe 1.56 0.26
D16 (5,0,0) safe 1.10 0.52
D17 (2,0,0) safe 0.68 x
D20 (2,0,0) safe 0.47 0.08
QD01 (1,0,1) safe 0.39 0.03
QD02 (1,0,1) safe 0.35 0.06
QD03 (1,0,1) safe 0.38 0.04
QD04 (1,0,1) unsafe 0.37 0.03
QD08 (1,0,1) safe 0.21 0.03
QD09 (1,0,1) safe 0.44 0.42
QD11 (1,0,1) unsafe 0.58 0.03
QD13 (2,0,2) unsafe 0.35 0.10
QD14 (3,0,1) safe 0.64 0.16
QD15 (3,0,1) unsafe 0.94 0.10
QD16 (4,0,1) safe 1.14 0.22
QD20 (1,0,1) safe 0.28 0.04

Table 5.1. Experiments on Suite 1: running time for safari and mcmt. safari
has been executed with both Term Abstraction and Counterexample Minimization
enabled. A ‘x’ indicates that the tool was not able to converge in the given time
out of 1 hour.

The two tables confirm the starting conjecture, i.e., on one side acceleration

gives better results (in matter of running time) than abstraction, thanks to its

precision. On the other side, abstraction achieve a complete coverage of the

112 Acceleration techniques for relations over arrays

safe unsafe
Pb. (l,n,q) safari mcmt safari mcmt

binarySort 3.95 x 6.53 2.00
bubbleSort 1.04 x 8.26 2.82
comp 0.32 0.04 0.40 0.06
compM 0.38 0.06 0.48 0.03
copy 0.28 0.03 0.34 0.03
copy2 0.33 0.06 0.45 0.05
copy3 0.39 0.08 0.57 0.15
copy4 0.45 0.14 0.78 0.74
copy5 0.50 0.19 0.98 2.63
copy6 0.57 0.21 1.22 8.31
copy7 0.64 0.21 1.51 20.31
copy8 0.67 0.28 1.76 48.97
copy9 0.72 0.46 2.17 104.22
copy10 0.80 0.52 2.57 245.78
find 0.28 0.03 0.36 0.05
findTest 0.41 0.03 0.85 0.13
heapArr 0.34 x 0.51 0.05
init 0.29 0.03 0.31 0.03
initTest 0.35 0.10 0.42 0.12
maxInArr 0.29 0.04 0.38 0.06
minInArr 0.29 0.04 0.39 0.06
nonDisj 0.55 1.39 0.76 2.50
partition 2.24 x 0.61 0.06
running 0.28 0.50 0.46 0.13
vararg 0.19 0.03 0.35 0.04

Table 5.2. Experiments on Suite 2: running time for safari and mcmt. safari
has been executed with both Term Abstraction and Counterexample Minimization
enabled. A ‘x’ indicates that the tool was not able to converge in the given time
out of 1 hour.

examples while acceleration fails on some examples, e.g., those with a more

complex data-flow structure like sorting procedures.

Given that we are working with a declarative framework, we can easily com-

bine the two techniques. Indeed, this idea is at the core of the Booster tool,

presented in chapter 8. There we shall show that acceleration and abstraction

can be gainfully combined, in such a way that the resulting framework over-

comes their individual limitations and allows to achieve very good results in

5.5 Related work 113

practice.

5.5 Related work

Acceleration has been widely and successfully applied to systems modeled via

integer state variables: indeed, transitive closure can be computed precisely (it

is definable within Presburger arithmetic) for relations that can be formalized

as difference bounds constraints [Comon and Jurski, 1998,Bozga et al., 2009c],

octagons [Bozga et al., 2009a] and finite monoid affine transformations [Finkel

and Leroux, 2002] (paper [Bozga et al., 2010] presents a general approach cov-

ering all these domains). Recently, acceleration for relations over Presburger

arithmetic has been plugged into abstraction/refinement loop for verifying in-

teger programs [Hojjat et al., 2012]. In contrast, our work, to best of our

knowledge, for the first time extends acceleration and its integration with ab-

straction/refinement to verification of array-based programs. A first promising

technique allowing acceleration of relations involving arrays of integers is pre-

sented in [Bozga et al., 2009b] via counter automata encoding. This solution

seems to be unable to handle properties of common interest with more than

one quantified variable (e.g., “sortedness”) and is limited to programs without

nested loops.

Acceleration has also been applied proficiently in the analysis of real time

systems (e.g., [Hendriks and Larsen, 2002,Behrmann et al., 2002]), to represent

in one transition the iterated execution of cyclic actions (e.g., polling-based

systems) and address the fragmentation problem.

As another related work to this area, it is worth to mention Cook’s com-

pleteness proof which reduces safety to an arithmetic encoding [Cook, 1978].

5.6 Summary

In this chapter we addressed the problems of (i) identifying a class of relations

over arrays admitting definable acceleration modulo the theory of linear arith-

metic over the integers enriched with free function symbols and (ii) studying

how to exploit acceleration into practice in the context of the verification of

programs with arrays.

We presented the divergence problem suffered by precise backward reacha-

bility analysis (section 5.1), detected a class of relations over arrays admitting

definable accelerations and show how to compute such acceleration in practice

(section 5.2). Definability of accelerations comes at the price of introducing

114 Acceleration techniques for relations over arrays

nested quantifiers that might prevent the practical exploitation of acceleration.

This might prevent practical advantages of acceleration for arrays. Our solu-

tion for this problem is the introduction of a quantifier-instantiation procedure

called monotonic abstraction (section 5.3), coupled with a suitable refinement

procedure.

We experimentally evaluated a prototype implementing the acceleration

procedure along with the aforementioned monotonic abstraction and refinement

techniques (section 5.4). The results show that acceleration constitutes an

alternative to abstraction on some benchmarks, leading to the conjecture (that

will be confirmed with the combined framework of chapter 8) that abstraction

and acceleration are orthogonal techniques that can be gainfully combined

together.

5.6.1 Related publications

The results reported in this chapter have been published in the following paper:

• F. Alberti, S. Ghilardi, and N. Sharygina. Definability of accelerated rela-

tions in a theory of arrays and its applications. In P. Fontaine, C. Ringeis-

sen, and R. A. Schmidt, editors, Frontiers of Combining Systems - 9th In-

ternational Symposium, FroCoS 2013, Nancy, France, September 18-20,

2013. Proceedings, volume 8152 of Lecture Notes in Computer Science,

pages 23–39. Springer, 2013.

Chapter 6

Decision procedures for Flat Array
Properties

This chapter presents new decidable quantified fragments of the theories of

arrays. A central notion in formal verification is the one of proof obligation.

Frameworks for the formal verification of systems, like those presented in Chap-

ters 3, 4 and 5, are usually structured according to a client-server architecture.

The client side implements algorithms and procedures in charge of analyzing

the input system, and the server is usually represented by a theorem prover

dealing with the queries generated by the client encoded in logical terms, the

so-called proof obligations. Proof obligations are, therefore, (first-order) for-

mulæ whose satisfiability or unsatisfiability drives the verification process. As

we already discussed in section 2.2, to achieve our final goal, i.e., the formal

verification of programs with arrays, quantification is required over the indexes

of the arrays in order to express significant properties like “the array has been

initialized to 0” or “there exist two different positions of the array containing

an element c”, for example.

In this chapter we focus our attention on the fragment

∃c∀i ψ(c , i , a(t)) (2.2)

of the theories of arrays ARR1(T) or ARR2(TI , TE).

We recall that from a logical point of view, array variables are interpreted

as functions; adding free function symbols to a theory T or TI ∪ TE (with the

goal to model array variables) may yield to undecidable extensions of widely

used theories like LIA (see the discussion in section 2.2.2). Given this negative

result, it is mandatory to identify fragments of the quantified theories of arrays

115

116 Decision procedures for Flat Array Properties

which are on one side still decidable and on the other side sufficiently expressive.

The quantified fragment of the theory of arrays we investigate in this chap-

ter is a sub-fragment of (2.2). Its investigation is suggested by the kind of

proof obligations arising when applying the techniques presented in chapters 3,

4 and 5. In particular, the preprocessing “flattening” the formulæ we manip-

ulate is a key step in our frameworks. As discussed in chapter 4, for example,

to generate quantified invariants we enhance the interpolation-based abstrac-

tion/refinements loop underlying our framework with a special heuristic, called

term abstraction, as discussed in section 4.1.1, aimed at searching ‘good’ in-

terpolants. For the heuristic to be productive, formulæ must be subjected to

‘flatness’ limitations on dereferencing: only positions named by variables are

allowed in dereferencing1. This gives the possibility to abstract out the unde-

sired term t while simultaneously synthesizing a genuinely quantified assertion.

Thus, flatness limitations constitute a key entry for some heuristics to work.

In this chapter, we leverage flatness conditions to identify a new decidable

sub-fragment of (2.2). Notably, as we introduced in section 2.2.1, it is trivially

true that every formula can be flattened via logical equivalences introducing

extra quantifiers, i.e., by exploiting the rewriting rules

φ(a(t), ...) ∃x(x = t∧ φ(a(x), ...)) or φ(a(t), ...) ∀x(x = t→ φ(a(x), ...))

On the other side, these rewriting rules may alter the quantifiers prefix of a

formula, and it is also well-known that decidability results are sensible to the

shape of quantifiers prefixes in prenex normal forms.

Flatness limitations combined with prefix limitations may introduce mean-

ingful restrictions: this chapter shows that such restrictions can play a positive

role for getting decidability. Another feature that can lead to decidability is the

limitation to a single universally quantified variable in certain contexts [Haber-

mehl et al., 2008b] and in fact we show that this kind of limitation can be

usefully combined with flatness restrictions too.

The contribution of this chapter is the definition of new decidable sub-

fragments of (2.2), that we called Flat Array Properties. We will examine Flat

Array Properties of both ARR1(T) and ARR2(TI , TE). Our decidability results

are fully declarative and parametric in the theories T , TI , TE. For both settings,

we provide sufficient conditions on T and TI , TE for achieving the decidability of

Flat Array Properties. Such hypotheses are widely met by theories of interest

in practice, like LIA. Our decision procedures reduce the decidability of Flat

1Let φ(a[t], . . .) be a formula involving the term a[t]. The “flat” version of φ(a[t], . . .) is
the equivalent formula ∃x (x = t ∧ φ(a[x], . . .))

6.1 Background notation 117

Array Properties to the decidability of T -formulæ in one case and TI- and

TE-formulæ in the other case.

6.1 Background notation

In this chapter we assume the notions introduced in chapter 2. Notationally,

we recall that we use a for a tuple a = a1, . . . , a|a| of distinct ‘array constants’

(i.e., free function symbols); if t = t1, . . . , t|t| is a tuple of terms, the notation

a(t) represents the tuple (of length |a| · |t|) of terms a1(t1), . . . , a1(t|t|), . . . ,

a|a|(t1), . . . , a|a|(t|t|).

In this chapter we will identify quantified fragments of theories as follows.

Let T = (Σ, C) be a theory and let R be a regular expression over the alphabet

{∃,∀}. The R-class of T is the class of Σ-formulæ comprising all and only

those prenex Σ-formulæ whose prefix generates a string Q1 · · ·Qn matched by

R.

6.2 The mono-sorted case

In this section we consider the Flat Array Properties over the mono-sorted

theory of arrays.

Let T = (Σ, C) be a theory, and ARR1(T) be the theory obtained from T by

adding to it infinitely many (fresh) free unary function symbols. Recall that

ARR1(T) can be undecidable even if T is fully decidable. We start stating the

following theorem.

Theorem 6.2.1. If the T -satisfiability of ∃∗∀∃∗ sentences is decidable, then

the ARR1(T)-satisfiability of ∃∗∀-flat sentences is decidable.

Proof. We present an algorithm, SATMONO, for deciding the satisfiability of the

∃∗∀-flat fragment of ARR1(T) (we let T be (Σ, C)). Subsequently, we show that

SATMONO is sound and complete. From the complexity viewpoint, notice that

SATMONO produces a quadratic instance of a ∃∗∀∃∗-satisfiability problem.

6.2.1 The decision procedure SATMONO

Step I. Let

F := ∃c∀i.ψ(i, a(i), c, a(c))

be a ∃∗∀-flat ARR1(T)-sentence, where ψ is a quantifier-free Σ-formula.

Suppose that s is the length of a and t is the length of c (that is, a =

118 Decision procedures for Flat Array Properties

a1, . . . , as and c = c1, . . . , ct). Let e = 〈el,m〉 (1 ≤ l ≤ s, 1 ≤ m ≤ t) be a

tuple of length s · t of fresh variables and consider the ARR1(T)-formula:

F1 := ∃c∃e ∀i.ψ(i, a(i), c, e) ∧
∧

1≤l≤t

∧
1≤m≤s

am(cl) = el,m

Step II. Build the formula (logically equivalent to F1)

F2 := ∃c∃e∀i.

[
ψ(i, a(i), c, e) ∧

∧
1≤l≤t

(i = cl →
∧

1≤m≤s

am(i) = el,m)

]

Step III. Let d be a fresh tuple of variables of length s; check the T -satisfia-

bility of

F3 := ∃c∃e∀i ∃d.

[
ψ(i,d, c, e) ∧

∧
1≤l≤t

(i = cl →
∧

1≤m≤s

dm = el,m)

]

6.2.2 Correctness and completeness

SATMONO transforms an ARR1(T)-formula F into an equisatisfiable T -formula

F3 belonging to the ∃∗∀∃∗ fragment. More precisely, it holds that F, F1 and F2

are equivalent formulæ, because∧
1≤l≤t

∀i.(i = cl →
∧

1≤m≤s

am(i) = el,m) ≡
∧

1≤l≤t

∧
1≤m≤s

am(cl) = el,m

From F2 to F3 and back, satisfiability is preserved because F2 is the Skolem-

ization of F3, where the existentially quantified variables d = d1, . . . , ds are

substituted with the free unary function symbols a = a1, . . . as. In the above

proof, it is essential that F is flat and that only one universally quantified

variable occurs in it: these features are precisely the features needed for the

formula F2 to come from the Skolemization of F3.

Since LIA is decidable (via quantifier elimination), we get in particular

that

Corollary 6.2.1. The ARR1(LIA)-satisfiability of ∃∗∀-flat sentences is decid-

able.

6.3 The multi-sorted case 119

6.3 The multi-sorted case

We are now considering a multi-sorted theory of arrays parametric in the the-

ories specifying constraints over indexes and elements of the arrays, i.e., a

theory of the kind ARR2(TI , TE). Recall from section 2.2 that TI = (ΣI , CI)
and TE = (ΣE, CE); we assume that ΣI and ΣE are disjoint and for simplicity,

we let both signatures be mono-sorted (but extending our results to many-

sorted TE is quite straightforward): INDEX is the unique sort of TI and ELEM

the unique sort of TE. Now the theory ARR2(TI , TE) of arrays over TI and TE
is obtained from the union of ΣI ∪ ΣE by adding to it infinitely many (fresh)

free unary function symbols (these new function symbols will have domain sort

INDEX and codomain sort ELEM). The models of ARR2(TI , TE) are the structures

whose reducts to the symbols of sorts INDEX and ELEM are models of TI and

TE, respectively.

Consider now an atomic formula P (t1, . . . , tn) in the language of ARR2(TI , TE).

Since the predicate symbols of ARR2(TI , TE) are from ΣI ∪ΣE and ΣI ∩ΣE = ∅,
P belongs either to ΣI or to ΣE; in the former case all terms ti are ΣI-terms

(notice in fact that to produce a term of sort INDEX one must use only ΣI-

symbols) and in the latter case, all terms ti have sort ELEM. We say that

P (t1, . . . , tn) is an INDEX-atom in the former case and that it is an ELEM-atom

in the latter case.

When dealing with ARR2(TI , TE), we shall limit ourselves to quantified vari-

ables of sort INDEX: this limitation is justified by the application we target in

this thesis, i.e., verification of programs with arrays2.

Definition 6.3.1 (Monic sentence). A sentence in the language of ARR2(TI , TE)

is said to be monic iff it is in prenex form and every INDEX atom occurring in

it contains at most one universally quantified variable.

Example 6.3.1. Consider the following sentences:

(I) ∀i. a(i) = i; (II) ∀i1∀i2. (i1 ≤ i2 → a(i1) ≤ a(i2));

(III) ∃i1∃i2. (i1 ≤ i2 ∧ a(i1) 6≤ a(i2)); (IV) ∀i1∀i2. a(i1) = a(i2);

(V) ∀i. (D2(i)→ a(i) = 0); (V I) ∃i ∀j. (a1(j) < a2(3i)).

The flat formula (I) is not well-typed, hence it is not allowed in ARR2(LIA,LIA);

however, it is allowed in ARR1(LIA). Formula (II) expresses the fact that the

array a is sorted: it is flat but not monic (because of the atom i1 ≤ i2). On

2Topmost existentially quantified variables of sort ELEM can be modeled by enriching TE
with free constants.

120 Decision procedures for Flat Array Properties

the contrary, its negation (III) is flat and monic (because i1, i2 are now exis-

tentially quantified). Formula (IV) expresses that the array a is constant; it

is flat and monic (notice that the universally quantified variables i1, i2 both

occur in a(i1) = a(i2) but the latter is an ELEM atom). Formula (V) expresses

that a is initialized so to have all even positions equal to 0: it is monic and

flat. Formula (VI) is monic but not flat because of the term a2(3i) occurring

in it; however, in 3i no universally quantified variable occurs, so it is possible

to produce by flattening the following sentence

∃i ∃i′ ∀j (i′ = 3i ∧ a1(j) < a2(i′))

which is logically equivalent to (VI), it is flat and still lies in the ∃∗∀-class.

Finally, as a more complicated example, notice that the following sentence

∃k ∀i.

D2(k) ∧ a(k) = ‘\0‘ ∧
(D2(i) ∧ i < k → a(i) = ‘b‘) ∧
(¬D2(i) ∧ i < k → a(i) = ‘c‘)

is monic and flat: it says that a represents a string of the kind (bc)∗.

Theorem 6.3.1. If TI-satisfiability of ∃∗∀-sentences is decidable, then ARR2(TI , TE)-

satisfiability of ∃∗∀∗-monic-flat sentences is decidable.

Proof. As we did for SATMONO, we give a decision procedure, SATMULTI, for the

∃∗∀∗-monic-flat fragment of ARR2(TI , TE). Since the procedure is complex, we

divide our exposition in different phases. We summarize again here some high

level information, then we formally introduce the procedure in section 6.3.1.

Correctness and completeness of SATMULTI are split into two lemmas (Lem-

mas 6.3.2 and 6.3.1) to be proved in section 6.3.2 below.

First (Step I), the procedure guesses the sets (called ‘types’) of relevant

INDEX atoms satisfied in a model to be built. Subsequently (Step II) it intro-

duces a witness existential variable for each type together with the constraint

that guessed types are exhaustive. Finally (Step III, IV and V) the procedure

applies combination techniques for purification.

Theorem 6.3.1 reduces the ARR2(TI , TE)-satisfiability of ∃∗∀∗-monic-flat sen-

tences to the TI-satisfiability of ∃∗∀-sentences. We give here an informal ac-

count of the main argument we use in the proof. The fact that the formulæ to

be tested for satisfiability are monic is essential3 and we make use of this hy-

3Undecidability arises otherwise, see the discussion of section 2.2.2 for a reduction to
reachability problems of Minsky machines.

6.3 The multi-sorted case 121

pothesis by introducing witnesses for the realized unary types. The notion of a

type is commonly used in model theory; we adapt it to our context by defining

a type to be a maximal consistent set of INDEX literals occurring in the formula

to be tested for satisfiability. In other words: in every model, every element

from the support of the interpretation of the INDEX sort satisfies a maximal

consistent set of such INDEX literals; the latter, modulo renaming, are of the

kind L(i, c) (only one free variable occurs here by the monicity hypothesis, the

c are free constants coming from the Skolemization of the outermost existential

quantifiers). The satisfiability algorithm guesses in advanced which types M

are realized (i.e. satisfied), it introduces for each of them a witness constant

bM , it takes the conjunction of the original formula with the literals L(bM , c)

for L ∈ M (varying M) and with a universal INDEX formula saying that only

the guessed types are realized. Then, the single universal quantifier of the orig-

inal formula is instantiated over all constants. The final part of the algorithm

follows some Nelson-Oppen like combination schema in order to separately test

the INDEX and the ELEM components for satisfiability. We point out, once again,

that the above machinery works because we need to care about unary types

only; if we had to deal with non-monic formulæ, we were in trouble: guessing

binary types (i.e. maximal consistent sets of two-variables literals) would not

be sufficient, as one should also guess ternary types to match, e.g., the sec-

ond components and the first components of binary types, etc., making the

combinatorics out of control.

Notably, by considering the special case of formulæ in which ELEM atoms

do not occur, Theorem 6.3.1 has the following corollary concerning only TI .

Corollary 6.3.1. If TI-satisfiability of the ∃∗∀-sentences is decidable, then TI-
satisfiability of ∃∗∀∗-monic-flat sentences is decidable.

This is because by help of (rather expensive) Boolean manipulations one

can check directly that ∃∗∀∗-monic-flat TI-sentences are equivalent to disjunc-

tions of ∃∗∀ TI-sentences. In other words, the notion of being monic becomes

interesting only in presence of ELEM atoms.

6.3.1 The decision procedure SATMULTI

The algorithm is non-deterministic: the input formula is satisfiable iff we can

guess suitable data T,B so that the formulæ FI , FE below are satisfiable.

Step I. Let F be a ∃∗∀∗-monic-flat formula; let it be

F := ∃c∀i.ψ(i, a(i), c, a(c)),

122 Decision procedures for Flat Array Properties

(where as usual ψ is a TI ∪ TE-quantifier-free formula). Suppose a =

a1, . . . , as, i = i1, . . . , in and c = c1, . . . , ct. Consider the set (notice that

all atoms in K are ΣI-atoms and have just one free variable because F

is monic)

K = {A(x, c) | A(ik, c) is an INDEX atom of F}1≤k≤n ∪ {x = cl}1≤l≤t

Let us call type a set of literals M such that: (i) each literal of M is an

atom in K or its negation; (ii) for all A(x, c) ∈ K, either A(x, c) ∈M or

¬A(x, c) ∈M . Guess a set T = {M1, . . . ,Mq} of types.

Step II. Let b = b1, . . . , bq be a tuple of new variables of sort INDEX and let

F1 := ∃b∃c

∀x.

 q∨
j=1

∧
L∈Mj

L(x, c)

 ∧
q∧
j=1

∧
L∈Mj

L(bj, c) ∧

∧
σ:i→b

ψ(iσ, a(iσ), c, a(c))

where iσ is the tuple of terms σ(i1), . . . , σ(in).

Step III. Let e = 〈el,m〉 (1 ≤ l ≤ s, 1 ≤ m ≤ t + q) be a tuple of length

s · (t+ q) of free constants of sort ELEM. Consider the formula

F2 := ∃b ∃c

∀x.

 q∨
j=1

∧
L∈Mj

L(x, c)

 ∧
q∧
j=1

∧
L∈Mj

L(bj, c) ∧

ψ̄(b, c, e) ∧∧
dm,dn∈b∗c

s∧
l=1

(dm = dn → el,m = el,n)

where b∗c := d1, . . . , dq+t is the concatenation of the tuples b and c and

6.3 The multi-sorted case 123

ψ̄(b, c, e) is obtained from∧
σ:i→b

ψ(iσ, a(iσ), c, a(c))

by substituting each term in the tuple a(b) ∗ a(c) with the constant

occupying the corresponding position in the tuple e.

Step IV. Let B a full Boolean satisfying assignment for the atoms of the

formula

F3 := ψ̄(b, c, e) ∧
∧

dm,dn∈b∗c

s∧
l=1

(dm = dn → el,m = el,n)

and let ψ̄I(b, c), ψ̄E(e) be the (conjunction of the) sets of literals of sort

INDEX and ELEM, respectively, induced by B.

Step V. Check the TI-satisfiability of

FI := ∃b∃c.

∀x.
 q∨
j=1

∧
L∈Mj

L(x, c)

 ∧ q∧
j=1

∧
L∈Mj

L(bj, c) ∧ ψ̄I(b, c)

and the TE-satisfiability of

FE := ψ̄E(e)

Notice that FI is an ∃∗∀-sentence; FE is ground and the TE-satisfiability of FE
(considering the e as variables instead of as free constants) is decidable because

we assumed that all the theories we consider in this thesis have quantifier-free

fragments decidable for satisfiability. The procedure SATMULTI returns SAT if

both satisfiability tests are successful.

6.3.2 Correctness and Completeness

Before proving correctness and completeness, we introduce useful notation. We

use letters b̃, c̃, . . . for elements from the support of a model; notation b̃, c̃, . . .

is used for tuples (possibly with repetitions) of such elements. For a formula

ϕ(c) containing the free variables c := c1, . . . , cn and for a tuple of elements

c̃ := c̃1, . . . , c̃n from the support of a model M, M |= ϕ(c̃) means that ϕ(c) is

true in M under the assignment mapping the c to the c̃.

124 Decision procedures for Flat Array Properties

Below, we assume that F is the ∃∗∀∗-monic-flat formula

F := ∃c∀i.ψ(i, a(i), c, a(c));

the formulæ F1, F2, F3, FI , FE are as described in the decision procedure SATMULTI

of section 6.3.1.

Lemma 6.3.1 (Completeness of SATMULTI). If F is ARR2(TI , TE)-satisfiable,

then it is possible to choose the set T and the Boolean assignment B so that

FI is TI-satisfiable and FE is TE-satisfiable.

Proof. LetM be a model of F . We haveM |= ∀i.ψ(i, a(i), c̃, a(c̃)) for suitable

c̃ from INDEXM.

A type M is realized in M iff there is some b̃ ∈ INDEXM such that M |=∧
L∈M L(b̃, c̃) (we say in this case that b̃ realizes M).4 We take T to be the set

of types realized in M; if T = {M1, . . . ,Mq}, we pick a tuple b̃ = b̃1, . . . , b̃q
from INDEXM realizing them. By assigning precisely this tuple to the variables

b of F1, we get

M |= ∀x.

 q∨
j=1

∧
L∈Mj

L(x, c̃)

 ∧
q∧
j=1

∧
L∈Mj

L(b̃j, c̃) ∧

∧
σ:i→b̃

ψ(iσ, a(iσ), c̃, a(c̃))

(this formula is F1 without the outermost existential quantifiers and with c,b

replaced by - the names of - c̃, b̃). If we furthermore let the tuple ẽ be the

4 Notice that this type realization notion is relative to the choice of the elements c̃ assigned
to the c.

6.3 The multi-sorted case 125

tuple of the elements denoted by the terms a[c̃] ∗ a[b̃], we get5

M |= ∀x.

 q∨
j=1

∧
L∈Mj

L(x, c̃)

 ∧
q∧
j=1

∧
L∈Mj

L(b̃j, c̃) ∧

ψ̄(b̃, c̃, ẽ) ∧∧
d̃m,d̃n∈b̃∗c̃

s∧
l=1

(d̃m = d̃n → ẽl,m = ẽl,n)

as well. Now we can get our B just by collecting the truth-values of the relevant

INDEX and ELEM atoms involved in the above formula; by construction, it is clear

that FI and FE become both true.

Lemma 6.3.2 (Soundness of SATMULTI). If there exist T := {M1, . . . ,Mq} and

B such that FI is TI-satisfiable and FE is TE-satisfiable, then F is ARR2(TI , TE)-

satisfiable.

Proof. Suppose we are given a set of types T = {M1, . . . ,Mq} and a Boolean

assignment B such that there exists two models MI ,ME of TI , TE, respec-

tively, such that MI |= FI and ME |= FE. From the fact that FI is true in

MI , it follows that there are elements c̃, b̃ from INDEXMI such that

MI |= ∀x.

 q∨
j=1

∧
L∈Mj

L(x, c̃)

 ∧ q∧
j=1

∧
L∈Mj

L(b̃j, c̃) ∧ ψ̃I(b̃, c̃) . (6.1)

In particular,

MI |=
∧
L∈Mj

L(b̃j, c̃)

holds for every Mj ∈ T. Thus, each Mj ∈ T is associated with an element

b̃j ∈ INDEXMI that realizes it, while

MI |= ∀x.

 q∨
j=1

∧
L∈Mj

L(x, c̃)

 (6.2)

5In particular, M |= ∀x.(
∨q
j=1

∧
L∈Mj

L(x, c̃)) says that at most M1, . . . ,Mq are realized

and the second conjunct says that in fact M1, . . . ,Mq are realized (by b̃1, . . . , b̃q, respectively).

126 Decision procedures for Flat Array Properties

implies that every z̃ ∈ INDEXMI realizes some Mj ∈ T (see the proof of the

previous Lemma for the definition of type realization). We introduce the fol-

lowing notation: given two elements z̃1, z̃2 ∈ INDEXMI , z̃1 ≈ z̃2 holds iff z̃1

and z̃2 realize the same type. Thus, for every z̃ ∈ INDEXMI there is a (unique

because types are mutually inconsistent) b̃j ∈ b̃ such that z̃ ≈ b̃j. We call this

bj the representative of z̃.

Now, sinceME |= FE, there are elements ẽ ∈ ELEMME such that (once they

are used to interpret the constants e) we have

ME |= ψ̄E(ẽ) . (6.3)

To get a model M for ARR2(TI , TE) we need only to interpret the function

symbols a = a1, . . . , as as functions from INDEXMI into ELEMME . Before doing

that, let us observe that, because of our choice of B, we have that ψ̄I(b, c) ∧
ψ̄E(e) → F3 is a tautology. Recalling the definition of F3 from Step IV of

the procedure SATMULTI, this means that (independently on how we define the

interpretation of the symbols a not occurring in F3) we shall have

M |= ψ̄(b̃, c̃, ẽ) ∧
∧

d̃m,d̃n∈b̃∗c̃

s∧
l=1

(d̃m = d̃n → ẽl,m = ẽl,n) . (6.4)

For every l = 1, . . . , s and for every d̃m ∈ b̃ ∗ c̃ we put

aMl (d̃m) := ẽl,m . (6.5)

By (6.4), this definition gives a partial function. To make it total, for any other

z̃ (i.e. z̃ 6∈ b̃ ∗ c̃) pick the representative b̃j of z̃, and define

aMl (z̃) := aMl (b̃j) . (6.6)

We claim that we have, for every z̃1, z̃2 ∈ INDEXMI

z̃1 ≈ z̃2 ⇒ aMl (z̃1) = aMl (z̃2) . (6.7)

To prove the claim, it is sufficient to show that, if b̃j is the representative of z̃,

then aMl (z̃) = aMl (b̃j). This is obvious if z̃ 6∈ b̃∗ c̃ and if z̃ ∈ b̃∗ c̃, we only have

to check the case in which z̃ is some c̃l ∈ c̃. However, since x = cl is among

the atoms contributing to the definition of a type (see Step I of the procedure

SATMULTI), it follows that the representative b̃j of c̃l satisfies the formula x = c̃l
(because the latter is trivially satisfied by c̃l) and hence we have that b̃j = c̃l.

6.3 The multi-sorted case 127

By (6.4) and (6.5), it follows that aMl (c̃j) = aMl (b̃j). This ends the proof of the

claim.

It remains to prove that M is a model of F , i.e. that we have

M |= ∀i.ψ(i, a(i), c̃, a(c̃)) . (6.8)

First notice that, by (6.5),(6.4) and by the definition of ψ̄(b, c, e) (see Step

III of the procedure SATMULTI), we have6

M |=
∧
σ:i→b̃

ψ(iσ, a(iσ), c̃, a(c̃)) . (6.9)

Let τ be the map that associates with every z̃ its representative b̃j ∈ b̃; it is

sufficient to show that for every z̃ = z̃1, . . . , z̃n from INDEXM,7 we have, for

every atom A(i, a(i), c, a(c)) occurring in ψ(i, a(i), c, a(c))

M |= A(z̃, a(z̃), c̃, a(c̃))↔ A(z̃τ, a(z̃τ), c̃, a(c̃)) (6.10)

(then (6.8) follows from (6.9) and (6.10) by induction on the number of Boolean

connectives in ψ, taking for every assignment i 7→ z̃ the conjunct σ correspond-

ing to i 7→ z̃ 7→ z̃τ). In turn, (6.10) is a special case of the following more gen-

eral fact: if z̃ and z̃′ have length n and we have z̃i ≈ z̃′i (for every i = 1, . . . , n),

then

M |= A(z̃, a(z̃), c̃, a(c̃))↔ A(z̃′, a(z̃′), c̃, a(c̃)) (6.11)

for every atom A occurring in ψ. However, (6.11) holds for ELEM atoms thanks

to (6.7) and for INDEX atoms due to the fact that z̃i, z̃
′
i realize the same type

and the input formula F := ∃c∀i.ψ(i, a(i), c, a(c)) is monic.

6.3.3 Complexity Analysis.

Theorem 6.3.1 applies to ARR2(LIA,LIA) because LIA admits quantifier

elimination. For this theory, we can determine complexity upper and lower

bounds:

Theorem 6.3.2. ARR2(LIA,LIA)-satisfiability of ∃∗∀∗-monic-flat sentences

is NExpTime-complete.

6 Since types are pairwise inconsistent, the elements b̃ are in bijective correspondence
to the variables b, hence we can freely suppose that the maps σ indexing the big conjunct
of (6.9) have codomain b̃.

7 Recall that n is the length of the tuple i. Here z̃ ranges over all possible tuples of
elements that can be assigned to the tuple of variables i.

128 Decision procedures for Flat Array Properties

The proof is split into the two lemmas below, giving the lower and upper

bound required.

Lemma 6.3.3 (Lower Bound). ARR2(LIA,LIA)-satisfiability of ∃∗∀∗-monic-

flat sentences is NExpTime-hard.

Proof. First, we introduce the bounded version of the domino problem used

in the reduction. A domino system is a triple D = (D,H, V), where D is a

finite set of domino types and H,V ⊆ D × D are the horizontal and vertical

matching conditions. Let D be a domino system and I = d0, . . . , dn−1 ∈ D∗ an

initial condition, i.e. a sequence of domino types of length n > 0. A mapping

τ : {0, . . . , 2n+1 − 1} × {0, . . . , 2n+1 − 1} → D is a 2n+1-bounded solution of D
respecting the initial condition I iff, for all x, y < 2n+1, the following holds:

• if τ(x, y) = d and τ(x⊕2n+1 1, y) = d′, then (d, d′) ∈ H;

• if τ(x, y) = d and τ(x, y ⊕2n+1 1) = d′, then (d, d′) ∈ V ;

• τ(i, 0) = di for i < n;

where ⊕2n+1 denotes addition modulo 2n+1.

It is well-known [Börger et al., 1997, Lewis, 1978] that there is a domino

system D = (D,H, V) such that the following problem is NExpTime-hard:

given an initial condition I = d0, . . . , dn−1 ∈ D∗, does D have a 2n+1-bounded

solution respecting I or not?

We show that this problem can be reduced in polynomial time to satisfia-

bility of ∃∗∀∗-flat and simple sentences in ARR2(LIA,LIA).

Let us associate (in an injective way) with every element d ∈ D a nu-

meral (we call this numeral again d for simplicity8); we shall use just one array

variable, to be called a.

Let p0, . . . , pn, q0, . . . , qn be distinct pairwise co-prime numbers. We under-

line that p0, . . . , pn, q0, . . . , qn can be computed in time polynomial in n and

that polynomially many bits are needed to represent them and, as a conse-

quence, also the divisibility predicates Dp0 , . . . , Dpn , Dq0 , . . . , Dqn (to see that

this is the case, one can use the well-known bound, proved by Rosser in [Rosser,

8A numeral is a ground term of the kind 1 + · · ·+ 1, i.e. a ground term canonically repre-
senting a number. The argument we use works also for weaker theories like ARR2(LIA, Eq),
where Eq is the pure identity theory in a language containing infinitely many constants
constrained to be distinct.

6.3 The multi-sorted case 129

1939] - see also [Bach and Shallit, 1996], saying that the N -th prime number

is less than N logN + 2N log logN , for all N > 3).9

We say a natural number i represents the point of coordinates (x, y) ∈
[0, 2n+1 − 1]× [0, 2n+1 − 1] iff for all k = 0, . . . , n, we have that

(i) Dpk(i) holds iff the k-th bit of the binary representation of x is 0;

(ii) Dqk(i) holds iff the k-th bit of the binary representation of y is 0.

Of course, the same (x, y) can be represented in many ways, but at least one

representative number exists by the Chinese Reminder Theorem.

We now introduce the following abbreviations:

• HE(e, e′) stands for
∨

(d,d′)∈H(e = d ∧ e′ = d′);

• VE(e, e′) stands for
∨

(d,d′)∈V (e = d ∧ e′ = d′);

• HI(i, i
′) stands for the conjunction of

∧n
k=0(Dqk(i)↔ Dqk(i′)) with

(
n∧
k=0

(¬Dpk(i) ∧Dpk(i′))

)
∨

n∨
k=0

∧
l>k

(Dpl(i)↔ Dpl(i
′)) ∧

Dpk(i) ∧ ¬Dpk(i′) ∧∧
l<k

(¬Dpl(i) ∧Dpl(i
′))

• VI(i, i

′) stands for the conjunction of
∧n
k=0(Dpk(i)↔ Dpk(i′)) with

(
n∧
k=0

(¬Dqk(i) ∧Dqk(i′))

)
∨

n∨
k=0

∧
l>k

(Dql(i)↔ Dql(i
′)) ∧

Dqk(i) ∧ ¬Dqk(i′) ∧∧
l<k

(¬Dql(i) ∧Dql(i
′))

Thus, HI(i, i

′) holds iff i represents (x, y), i′ represents (x′, y′) and we have

y = y′ and x′ = x ⊕2n+1 1. Similarly, VI(i, i
′) holds iff i represents (x, y), i′

represents (x′, y′) and we have x = x′ and y′ = y ⊕2n+1 1.

9 For our purposes, the following elementary argument would be sufficient as well, because
it gives a formula for a direct polynomial computation (under logarithmic cost criterion).
Define h(2) := 2 and h(n + 1) := 1 +

∏
m<n h(m); it is clear that if k1 < k2, then h(k1)

and h(k2) are co-prime, because the reminder of the division of h(k2) by every factor of
h(k1) is 1. Also, we easily get h(n) ≤ n! by induction: indeed, h(2) ≤ 2! and h(n+ 1) ≤
1 +

∏
m≤n h(m) ≤ 1 + n · n! ≤ (n+ 1)!.

130 Decision procedures for Flat Array Properties

We introduce abbreviations P0,0(i), . . . , Pn−1,0(i) to express the fact that i

represents the point of coordinates (0, 0), . . . , (n− 1, 0), respectively, by using

the formulae

P0,0(i) :=
n∧
k=0

Dqk(i) ∧
n∧
k=0

Dpk(i)

P1,0(i) :=
n∧
k=0

Dqk(i) ∧ ¬Dp0(i) ∧
n∧
k=1

Dpk(i)

P2,0(i) :=
n∧
k=0

Dqk(i) ∧Dp0(i) ∧ ¬Dp1(i) ∧
n∧
k=2

Dpk(i)

· · ·

The existence of a tiling is then expressed by the satisfiability of the formula

below (the first conjunct takes care of the initialization, whereas the last two

about tile matching):

n−1∧
k=0

∀i (Pk,0(i)→ a[i] = dk) ∧

∧ ∀i1 ∀i2 (HI(i1, i2)→ HE(a[i1], a[i2])) ∧
∧ ∀i1 ∀i2 (VI(i1, i2)→ VE(a[i1], a[i2])) .

Notice that the above (polynomially long) formula is in the ∀∗-monic-flat frag-

ment, as it can be seen by inspecting the definitions of the macros we used for

for Pk,0(i), VI(i1, i2), HI(i1, i2).

Lemma 6.3.4 (Uppper Bound). ARR2(LIA,LIA)-satisfiability of ∃∗∀∗-monic-

flat sentences is in NExpTime.

Proof. To show the matching upper bound, it is sufficient to inspect our de-

cision algorithm SATMULTI. Clearly, Step I introduces an exponential guess;

the formulæ F1, F2, F3, FI , FE are all exponentially long (notice that there are

exponentially many σ in F1 and B can be seen as a set of exponentially many

literals). It is well-known that LIA-satisfiability of quantifier-free formulæ is

in NP (see the historical references in [Oppen, 1978] for the origins of this re-

sult), so that satisfiability of FE also takes non deterministic exponential time.

We only have to discuss LIA-satisfiability of FI in more detail. Now, FI is not

quantifier-free and in order to check its satisfiability we need to run a quantifier

6.4 Related work 131

elimination procedure to the subformula

¬∃x¬

 q∨
j=1

∧
L∈Mj

L(x, c)

 (6.12)

The point is that this formula is exponentially long and so we must carefully

analyze the cost of the elimination of a single existential quantifier in LIA.

We need the following lemma from [Oppen, 1978] (Theorem 1, p.327):

Lemma 6.3.5. Suppose that Cooper’s quantifier elimination algorithm, applied

to a formula ∃xφ (with quantifier-free φ) yields the quantifier-free formula

φ′. Let c0 (resp. c1) be the number of distinct positive integers appearing as

indexes of divisibility predicates or as variable coefficients within φ (resp. φ′);

let s0 (resp. s1) be the largest absolute values of integer constants (including

coefficients) occurring in φ (resp. φ′); let a0 (resp. a1) be the number of atoms

of φ (resp. φ′). Then the following relationship hold:

c1 ≤ c4
0, s1 ≤ s4c0

0 , a1 ≤ a4
0s

2c0
0 .

Now notice that (6.12) is exponentially long, but integer constants, integer

coefficients and indexes of divisibility predicates are the same as in the input

formula. Thus, if N bounds the length of the input formula, we get a 2O(N2)-

bound for the above parameters c1, s1, a1 for the formula φ′ resulting from the

elimination of the universal quantifier from (6.12). Now (quoting from [Op-

pen, 1978], p.329), “the space required to store [a formula] Fk is bounded by

the product of the number of atoms ak in Fk, the maximum number m+ 1 of

constants per atom, the maximum amount of space sk required to store each

constant, and some constant q (included for the various arithmetic and logical

operators, etc.).” This means that our φ′ is exponentially long and, as a con-

sequence, our satisfiability testing for FI works in NExPtime, as it applies an

NP algorithm to an exponential instance.

6.4 Related work

The modular nature of our solution makes our contributions orthogonal with

respect to the state of the art: we can enrich LIA with various definable or even

not definable symbols [Semënov, 1984] and get from our Theorems 6.2.1,6.3.1

decidable classes which are far from the scope of existing results. Given the

parameterized nature of our results, there is some similarity with [Ihlemann

132 Decision procedures for Flat Array Properties

et al., 2008], although (contrary to [Ihlemann et al., 2008]) we consider purely

syntactically specified classes of formulæ. It is interesting to notice that also

the special cases of the decidable classes covered by Corollary 6.2.1 and The-

orem 6.3.2 are orthogonal to the results from the literature. To this aim, we

make a closer comparison with [Habermehl et al., 2008a,Bradley et al., 2006].

The two fragments considered in [Habermehl et al., 2008a, Bradley et al.,

2006] are characterized by rather restrictive syntactic constraints. In [Haber-

mehl et al., 2008a] it is considered a subclass of the ∃∗∀-fragment of ARR1(T)

called SIL, Single Index Logic. In this class, formulæ are built according to

a grammar allowing (i) as atoms occurring in universally quantified subfor-

mulæ only difference logic constraints and some equations modulo a fixed in-

teger and (ii) as universally quantified subformulæ only formulæ of the kind

∀i.φ(i)→ ψ(i, a(i + k)) (here k is a tuple of integers) where φ, ψ are conjunc-

tions of atoms (in particular, no disjunction is allowed in ψ). On the other side,

SIL includes some non-flat formulæ, due to the presence of constant increment

terms i+k in the consequents of the above universally quantified implications.

Similar restrictions are in [Habermehl et al., 2008b].

The Array Property Fragment described in [Bradley et al., 2006] is basically

a subclass of the ∃∗∀∗-fragment of ARR2(LIA,LIA); however universally quan-

tified subformulæ are constrained to be of the kind ∀i.φ(i) → ψ(a(i)), where

in addition the INDEX part φ(i) is restricted to be a conjunction of atoms of

the following four kinds: i ≤ j, i ≤ t, t ≤ i (with i, j ∈ i and where t does not

contain occurrences of the universally quantified variables i). These formulæ

are flat; they may not be monic because of the atoms i ≤ j.

From a computational point of view, a complexity bound for SATMONO

has been shown in the proof of Theorem 6.2.1, while the complexity of the

decision procedure proposed in [Habermehl et al., 2008a] is unknown. On the

other side, both SATMULTI and the decision procedure described in [Bradley

et al., 2006] run in NExpTime. The decision procedure in [Bradley et al.,

2006] is in NP only if the number of universally quantified index variables is

bounded by a constant N (this is not the case of SATMULTI, where with two

universally quantified index variables the NExpTime lower and upper bounds

are attained).

Our decision procedures for quantified formulæ are also partially different,

in spirit, from those presented so far in the SMT community. While the de-

cidability of the vast majority of SMT-Solvers address the problem of checking

the satisfiability of quantified formulæ via instantiation (see, e.g., [Bradley

et al., 2006,Detlefs et al., 2003,Ge and de Moura, 2009,Reynolds et al., 2013]),

our procedure SATMULTI is still based on instantiation, but the instantiation

6.5 Summary 133

refers to a set of terms enlarged with the free constants witnessing the guessed

set of realized types. Notice also that SATMULTI introduces in Step II (see sec-

tion 6.3.1) a universally quantified arithmetic subformula to be handled in Step

V (for the lack of a better method) via quantifier-elimination; a similar remark

applies also to SATMONO, thus the generation of quantified purely arithmetic

sub-goals is an additional specific feature of our satisfiability procedures.

De Moura and Bjørner and Goel et al. presented in [de Moura and Bjørner,

2009] and [Goel et al., 2008], respectively, two interesting work describing a de-

cision procedure for the theory of arrays proposed by McCarthy in [McCarthy,

1962], i.e., the theory having as a signature the symbols { [], store(, ,)} which

interpretation is constrained by the two axioms

∀a, i, v.store(a, i, v)[i] = v

∀a, i, j, v.(i = j ∨ store(a, i, v)[j] = a[j])

These works are interested for us since some Flat Array Properties can, in

fact, be expressed without quantifiers by exploiting the signature symbols of

the theory of arrays and handled by the two ground decision procedures for

arrays presented in the aforementioned works. We point out that, however,

enlarging the signature of a theory is a double-edged sword. If, on the one hand,

expressiveness is augmented, on the other hand (the SMT side) the decision

procedure has to be enhanced to deal with the newly introduced symbols.

6.5 Summary

In this chapter we presented a new decidable subfragment of the ∃∗∀∗-fragment

of the theories of arrays. We called it Flat Array Properties. Indeed flatness,

along with some other monic constraints, is the key for stating our new decid-

ability results. Our new decision procedures are parameterized in terms of the

theories describing the indexes and elements of the arrays. Required features

for the decidability of Flat Array Properties decidability are met by theories

widely used in practice, e.g., Linear Arithmetic.

We studied Flat Array Properties of the mono-sorted theory of arrays (sec-

tion 6.2) and the multi-sorted theory of arrays (section 6.3). For the former case

we provided a general complexity analysis of our decision procedure, parameter-

ized in the complexity of the “base theory” to which free function symbols have

been added to model arrays. For the latter case, we studied the complexity for

deciding the satisfiability of (monic) Flat Array Properties of the multi-sorted

134 Decision procedures for Flat Array Properties

theory of arrays ARR2(LIA,LIA), showing that this is a NExpTime-complete

problem.

We point out that in [Alberti et al., 2014c, Alberti et al., 2015] we gave

experimental evidence that the class of Flat Array Properties admits formulæ

that do require our ad-hoc decision procedure for checking their decidability,

given that no available solver (up to the publishing date of [Alberti et al.,

2014c,Alberti et al., 2015]) is able to detect their (un)satisfiability. This show

that the fragment of Flat Array Property is not included into known decidable

fragments of the theories of arrays [Bradley et al., 2006, Habermehl et al.,

2008b,Ge and de Moura, 2009].

6.5.1 Related publications

The results reported in this chapter have been published in the following papers:

• F. Alberti, S. Ghilardi, and N. Sharygina. Decision procedures for Flat

Array Properties. In E. Ábrahám and K. Havelund, editors, Tools and

Algorithms for the Construction and Analysis of Systems - 20th Inter-

national Conference, TACAS 2014, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2014, Greno-

ble, France, April 5-13, 2014. Proceedings, volume 8413 of Lecture Notes

in Computer Science. Springer, 2014.

• F. Alberti, S. Ghilardi, and N. Sharygina. Decision procedures for Flat

Array Properties. Journal of Automated Reasoning, 54(4):327–352.

Chapter 7

Deciding the safety of a class of
programs with arrays

In this chapter we show that the safety of an interesting class of programs

handling arrays or strings of unknown length is decidable. We call this class

of programs simple0
A-programs : this class covers non-recursive programs imple-

menting for instance searching, copying, comparing, initializing, replacing and

testing functions. The method we use to show these safety results is similar to

a classical method adopted in the model-checking literature for programs ma-

nipulating integer variables (see for instance [Bozga et al., 2009c, Comon and

Jurski, 1998,Finkel and Leroux, 2002]): we first assume flatness conditions on

the control flow graph of the program and then we assume that transitions

labeling cycles are “acceleratable”. The key point is that the shape of most

accelerated transitions from [Alberti et al., 2013b] matches the definition of

Flat Array Properties. This fact with some constraints over the control-flow

structure of the programs allow to design an acceleration-based decision pro-

cedure, generating finitely many Flat Array Properties which unsatisfiability

determines the safety of a given simple0
A-program.

7.1 Background

This chapter builds on the results of chapters 5 and 6. We therefore assume the

notions introduced in sections 5.1 and 6.1 along with the more general back-

ground notions of chapter 2. In particular, as a reference theory, we shall use

ARR1(LIA+) or ARR2(LIA+,LIA+), where LIA+ is LIA enriched with free

constant symbols and with definable predicate and function symbols. Recall

from section 2.2.3 that definable symbols are nothing but useful macros that can

135

136 Deciding the safety of a class of programs with arrays

procedure initEven (a[N] , v) {
for (i = 0; i < N ; i = i+ 2) a[i] = v;

for (i = 0; i < N ; i = i+ 2) assert(a[i] = v);

}

(a)

linit

l1

l2

l3 lerror

τ1

τ2

τ3

τ4

τ5 τE

(b)
Figure 7.1. The initEven procedure (a) and its control-flow graph (b).

be used to formalize case-defined functions. Below, we let T be ARR1(LIA+)

or ARR2(LIA+,LIA+).

In this chapter it is convenient to consider the following definition of pro-

grams:

Definition 7.1.1 (Programs). Given a set of variables v, a program is a triple

P = (L,Λ, E), where (i) L = {l1, . . . , ln} is a set of program locations among

which we distinguish, as usual, an initial location linit and an error location

lerror; (ii) Λ is a finite set of transition formulæ {τ1(v,v′), . . . , τr(v,v
′)} and

(iii) E ⊆ L× Λ× L is a set of actions.

Obviously, any array-based transition system defined as a quadruple (v, linit, lerror, T)

(see section 2.3 and Definition 2.3.2) induces a program (L,Λ, E) matching Def-

inition 7.1.1. We also assume the availability of the three projection function on

E indicated by src,L, trg, that is, for e = (li, τj, lk) ∈ E, we have src(e) = li,

L(e) = τj (this is called the ‘label’ of e) and trg(e) = lk.

Example 7.1.1. Consider the procedure initEven, taken from [Dillig et al.,

2010], in Figure 7.1. For this procedure, a = a, s = i, v. N is a constant of the

background theory. Λ is the set of formulæ (we omit identical updates):

τ1 := i′ = 0

τ2 := i < N ∧ a′ = λj.if (j = i) then v else a(j) ∧ i′ = i+ 2

τ3 := i ≥ N ∧ i′ = 0

τ4 := i < N ∧ a(i) = v ∧ i′ = i+ 2

τ5 := i ≥ N

τE := i < N ∧ a(i) 6= v

The procedure initEven can be formalized as the control-flow graph depicted in

Figure 7.1(b), where L = {linit, l1, l2, l3, lerror}.

7.2 A decidability result for the reachability analysis of flat array programs 137

Definition 7.1.2 (Program paths). A program path (in short, path) of P =

(L,Λ, E) is a sequence ρ ∈ En, i.e., ρ = e1, e2, . . . , en, such that for every

ei, ei+1, trg(ei) = src(ei+1). We denote with |ρ| the length of the path. An

error path is a path ρ with src(e1) = linit and trg(e|ρ|) = lerror. A path ρ

is a feasible path if
∧|ρ|
j=1 L(ej)

(j) is T -satisfiable, where L(ej)
(j) represents

τij(v
(j−1),v(j)), with L(ej) = τij (the notation τij(v

(j−1),v(j)) means that we

made copies v(j−1),v(j) of the program variables v and we replaced v,v′ by

them in τ(v,v′)).

The (unbounded) reachability problem for a program P is to detect if P

admits a feasible error path. Proving the safety of P, therefore, means solv-

ing the reachability problem for P. Notably, this definition is equivalent to

the Definition 2.4.1 stating what does it mean to be safe for an array-based

transition system.

7.2 A decidability result for the reachability anal-

ysis of flat array programs

To gain decidability, we must first impose restrictions on the shape of the tran-

sition formulæ, for instance we can constrain the analysis to formulæ falling

within decidable classes like those we analyzed in chapter 6. This is not suf-

ficient however, due to the presence of loops in the control flow. Hence we

assume flatness conditions on such control flow and “accelerability” of the

transitions labeling self-loops. This is similar to what is done in [Bozga et al.,

2009c, Comon and Jurski, 1998, Finkel and Leroux, 2002] for integer variable

programs, but since we handle array variables we need specific restrictions for

acceleration.

We first give the definition of flat0-program, i.e., programs with only self-

loops for which each location belongs to at most one loop. Subsequently we

will identify sufficient conditions for achieving the full decidability of the reach-

ability problem for flat0-programs.

Definition 7.2.1 (flat0-program). A program P is a flat0-program if for every

path ρ = e1, . . . , en of P it holds that for every j < k (j, k ∈ {1, . . . , n}), if

src(ej) = trg(ek) then ej = ej+1 = · · · = ek.

We now turn our attention to transition formulæ. Recall that, given a loop

represented as a transition relation τ , the accelerated transition τ+ allows to

compute in one shot the precise set of states reachable after n unwindings

138 Deciding the safety of a class of programs with arrays

of that loop, for any n. This prevents divergence of the reachability analysis

along τ , caused by its unwinding. As discussed in chapter 5, an obstacle for the

applicability of acceleration in the domain we are targeting is that accelerations

are not always definable in the logical formalisms we consider. Based on this

observation, on definability of accelerations, we are now ready to state a general

result about the decidability of the reachability problem for programs with

arrays. The theorem we give is modular and general. We will show instances

of this result in the next sections. Notationally, let us extend the projection

function L by putting L+(e) := L(e)+ if src(e) = trg(e) and L+(e) := L(e)

otherwise, where L(e)+ denotes the acceleration of the transition labeling the

edge e.

Theorem 7.2.1. Let F be a class of formulæ decidable for T -satisfiability.

The unbounded reachability problem for a flat0-program P is decidable if

(i) F is closed under conjunctions and

(ii) for each e ∈ E one can compute α(v,v′) ∈ F such that T |= L+(e) ↔
α(v,v′).

Proof. Let ρ = e1, . . . , en be an error path of P; when testing its feasibility, ac-

cording to Definition 7.2.1, we can limit ourselves to the case in which e1, . . . , en
are all distinct, provided we replace the labels L(ek)

(k) with L+(ek)
(k) in the

formula
∧n
j=1 L(ej)

(j) from Definition 7.1.2.1 Thus P is unsafe iff, for some

path e1, . . . , en whose edges are all distinct, the formula

L+(e1)(1) ∧ · · · ∧ L+(en)(n) (7.1)

is T -satisfiable. Since the involved paths are finitely many and T -satisfiability

of formulæ like (7.1) is decidable, the safety of P can be decided.

7.3 A class of array programs with decidable reach-

ability problem

We are now ready to identify a class of programs with arrays – we call it

simple0
A-programs– for which requirements of Theorem 7.2.1 are met. The class

of simple0
A-programs contains non recursive programs implementing searching,

1 Notice that by these replacements we can represent in one shot infinitely many paths,
namely those executing self-loops any given number of times.

7.3 A class of array programs with decidable reachability problem 139

copying, comparing, initializing, replacing and testing procedures. As an ex-

ample, the initEven program reported in Figure 7.1 is a simple0
A-program. In

order to formalize the notion of simple0
A-program we need the notion of simplek-

assignments. Simplek-assignments are transitions (defined below) for which the

acceleration is first-order definable and is a Flat Array Property. For an integer

number k, we denote by k the term 1 + · · ·+ 1 (k-times) and by k · t the term

t+ · · ·+ t (k-times).

Definition 7.3.1 (simplek-assignment). Let k 6= 0; a simplek-assignment is a

transition τ(v,v′) of the kind

φL(s, a(d)) ∧ d′ = d+k ∧ d′ = d ∧ a′ = λj.if (j = d) then t(s, a(d)) else a(j)

where (i) s = d,d and (ii) the formula φL(s, a(d)) and the terms t(s, a(d)) are

flat.

Definition 7.3.2 (simple0
A-programs). A simple0

A-program P = (L,Λ, E) is a

flat0-program such that (i) every τ ∈ Λ is a formula belonging to one of the

decidable classes covered by Corollary 6.2.1 or Theorem 6.3.2; (ii) if e ∈ E is

a self-loop, then L(e) is a simplek-assignment.

To understand the above notation, recall that according to our conven-

tions, if a = a1, . . . , as, then a(d) means the s-tuple of terms a1(d), . . . , as(d);

moreover, t(s, a(d)) stands for an s-tuple of terms t1(s, a(d)), . . . , ts(s, a(d)).

Finally, a′ = λj(· · ·) stands for a conjunction of s-equations updating the

tuple a, where the λj(· · ·) notation indicates the s-tuple of functions which

are defined by the displayed macros. The formula a′ = λj(· · ·) can thus be

rewritten as a plain first order formula as follows

s∧
h=1

∀j.

(
(j = d ∧ a′h(j) = th(s, a(d))) ∨
∨ (j 6= d ∧ a′h(j) = ah(j))

)
(7.2)

In a simplek-assignment, the arrays a are scanned by the counter d, the cells a(d)

are overwritten and the counter is then increased by k. It would be possible to

extend the definition and the upcoming result to transitions requiring different

scanners for the different arrays (one scanner for each of them) with different

increments. In order to not complicating further the notation we prefer to skip

this easy generalization.

The following Lemma is an instance of the Theorem 5.2.2 and gives the

template for the accelerated counterpart of a simplek-assignment.

140 Deciding the safety of a class of programs with arrays

Lemma 7.3.1. Let τ(v,v′) be a simplek-assignment like in Definition 7.3.1.

Then τ+(v,v′) is T -equivalent to the formula

∃y > 0

(
∀z. (d ≤ z < d+ k · y ∧Dk(z − d)→ φL(z,d, a(d))) ∧
a′ = λj.U(j, y,v) ∧ d′ = d+ k · y ∧ d′ = d

)
(7.3)

where the definable functions Uh(j, y,v), 1 ≤ h ≤ |a|, of the tuple of functions

U are

if (d ≤ j < d+ k · y ∧Dk(j − d)) then bh(j,d, a(j)) else ah(j) .

Proof. It is sufficient to check by induction on y ≥ 1 that is we execute y-times

the simplek-assignment of Definition 7.3.1, we get

∀z. (d ≤ z < d+ k · y ∧Dk(z − d)→ φL(z,d, a(d))) ∧
∧ a′ = λj.U(j, y,v) ∧ d′ = d+ k · y ∧ d′ = d

which means that the accelerated assignment is described by (7.3).

Example 7.3.1. Consider transition τ2 from the formalization of our running

example of Figure 7.1. The acceleration τ+
2 of such formula is (we omit identical

updates)

∃y > 0.

(
∀z.(i ≤ z < i+ 2y ∧D2(z − i)→ z < N) ∧ i′ = i+ 2y ∧
a′ = λj. (if (i ≤ j < 2y + i ∧D2(j − i)) then v else a(j))

)

We can now formally show that the reachability problem for simple0
A-programs

is decidable, by instantiating Theorem 7.2.1 with the results obtained so far.

Theorem 7.3.1. The unbounded reachability problem for simple0
A-programs is

decidable.

Proof. By prenex transformations, distributions of universal quantifiers over

conjunctions, etc., it is easy to see that the decidable classes covered by Corol-

lary 6.2.1 or Theorem 6.3.2 are closed under conjunctions. Since the accelera-

tion of a simplek-assignment fits inside these classes (just eliminate definitions

via λ-abstractions by using universal quantifiers, like in (7.2)), Theorem 7.2.1

applies.

7.4 Summary 141

7.4 Summary

This chapter presented decidability results for establishing the safety of pro-

grams handling arrays. In general, the problem of checking the safety of pro-

grams is undecidable, given its relation to the halting problem [Turing, 1936].

The constraints on which we built our result characterize both the control-

flow structure of the program and the shape of the relations declaratively en-

coding the instructions of the program. We showed that decidability of the

safety analysis can established for programs with flat control-flow structure

and for which all the loops admit an acceleration falling in a decidable frag-

ment (section 7.2).

We subsequently instantiated this general result in the case of programs

handling arrays, exploiting the results presented in chapter 5 and chapter 6

(section 7.3).

7.4.1 Related publications

The results reported in this chapter have been published in the following papers:

• F. Alberti, S. Ghilardi, and N. Sharygina. Acceleration-based safety de-

cision procedure for programs with arrays. In K. L. McMillan, A. Mid-

deldorp, G. Sutcliffe, and A. Voronkov, editors, LPAR 2013, 19th In-

ternational Conference on Logic for Programming, Artificial Intelligence

and Reasoning, December 12-17, 2013, Stellenbosch, South Africa, Short

papers proceedings, volume 26 of EPiC Series, pages 1–8. EasyChair,

2013.

• F. Alberti, S. Ghilardi, and N. Sharygina. Decision procedures for Flat

Array Properties. In E. Ábrahám and K. Havelund, editors, Tools and

Algorithms for the Construction and Analysis of Systems - 20th Inter-

national Conference, TACAS 2014, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2014, Greno-

ble, France, April 5-13, 2014. Proceedings, volume 8413 of Lecture Notes

in Computer Science. Springer, 2014.

• F. Alberti, S. Ghilardi, and N. Sharygina. Decision procedures for Flat

Array Properties. Journal of Automated Reasoning, 54(4):327–352.

142 Deciding the safety of a class of programs with arrays

Chapter 8

Booster: a verification framework
for programs with arrays

This last chapter of the thesis presents Booster, a framework for the verifi-

cation of programs with arrays. The main feature of Booster, differentiating

it with respect to other tools offering a support for the analysis of programs

with arrays (e.g., [Bjørner et al., 2013,Cousot et al., 2011,Hoder et al., 2011,De

Angelis et al., 2014b,Garg et al., 2014,Dragan and Kovács, 2014]), it is being

based on a framework integrating quite standard abstraction-based solutions

with innovative acceleration procedures.

As stated in the introduction, this combination can be achieved thanks

to the fact that we work on a declarative level. The fact that all the tech-

niques we presented in this thesis work on formulæ allows for the design of a

framework combining all of them. The intuition behind the integrated frame-

work implemented in Booster is that acceleration and abstraction have or-

thogonal strengths and weaknesses. A combined framework will take the best

from such techniques overcoming their individual limitations. With respect to

abstraction-based procedures, acceleration offers a precise solution (not involv-

ing over-approximations) to the problem to compute the reachable state-space

of a transition system, but on the other side has syntactic restrictions prevent-

ing its general application. On the other side, abstraction-based solutions are

usually a very general framework, but they also require heuristics (and in some

cases even user guidance) in order to increase their practical effectiveness.

Beside offering an implementation of the techniques presented in the thesis,

Booster includes a front-end for a C-like programming language, some pre-

processing techniques and internal heuristics selecting the best options (e.g.,

term abstraction list) for the execution of its analysis techniques. This makes

143

144 Booster: a verification framework for programs with arrays

Program with assertions

Preprocessing

Parsing

AST

CFG gen.

Inlining

CFG

CG
generation

Abstract
Interpreter

Analysis

BMC

Acceleration (1)

SMT-solver

Proof obligations

Flat Array Properties

Cutpoint graph

F
ix

p
oi

n
t

E
n
gi

n
es

In
te

rf
ac

e

unknown
unsafe/

safe/unsafe/unknown

A
n
al

y
si

s
of

re
su

lt
s

Result of the verification

mcmt

Flat. Acc. (2) LAWI

SMT-solver

mcmt

Flat. Acc. (2) LAWI

SMT-solver

. . .

mcmt

Flat. Acc. (2) LAWI

SMT-solver

Figure 8.1. The architecture of Booster.

the verification of programs completely automatic.

Booster is structured according to the standard compilers architecture:

the initial parsing phase generates an intermediate representation of the code

which is subject to several optimizations before being fed to different modules

implementing some formal analysis technique for checking its safety.

The architecture of the tool will be described in the next section. This

chapter discusses also an extensive experimental evaluation of Booster on

a large class of examples taken from different heterogeneous sources (sec-

tion 8.2). This benchmark suite includes all the examples of other suites of

relevant related work, e.g., the examples from [Dillig et al., 2010]. To the

best of our knowledge, Booster is the only tool able to deal with the set

of examples in our benchmark suite. Notably, the relevance of the Booster

benchmark suite for the software model-checking research community is wit-

nessed by the fact that a large part of them became part of the SV-COMP

(Software Verification Competition, https://svn.sosy-lab.org/software/

sv-benchmarks/trunk/c/array-examples/) starting from the 19th of Septem-

ber, 20141.

8.1 Architecture of Booster

Figure 8.1 depicts the architecture of Booster. The features of the tool are

described in the following subsections.

1Booster accepts a formalisms for quantified assertions. The benchmarks with quanti-
fied assertions are not part of the SV-COMP.

https://svn.sosy-lab.org/software/sv-benchmarks/trunk/c/array-examples/
https://svn.sosy-lab.org/software/sv-benchmarks/trunk/c/array-examples/

8.1 Architecture of Booster 145

8.1.1 Preprocessing

Booster parses a C-like language. It accepts int and bool scalar variables,

arrays of int and bool. Program can have multiple procedures in addition to

the main one, but not recursive procedures. We allow quantified assertions,

which are convenient for writing in a readable and compact way interesting

properties over arrays. These assertions are recognized by the grammar

assert (forall (vars decl) :: bool expr)

where vars decl and bool expr matches respectively a valid C declaration of

a sequence of scalar (integer) variables and a C Boolean expression. We also

assume that all the arrays have an unknown, unbounded length, and the pass-

by-reference paradigm when array variables are passed as arguments to the

methods of the program. Non-initialized variables (or array cells) are not

implicitly assigned to a default value. This implies that if Booster verifies a

program, the program is safe for any value of the uninitialized variables and

array cells.

Given a program, Booster generates its control-flow graph (CFG) and

inlines procedure calls. Each block of the CFG contains a sequence of instruc-

tions which can be only assignments or assumptions. The CFG generated by

Booster has one entry block, the natural starting point of the program, and

two exit blocks: one reachable by all the executions of the program correctly

terminating and the other one reachable by those executions violating some

assertions in the code. From the CFG, Booster builds the cutpoint graph

(CG) of the input program [Gurfinkel et al., 2011]. A cutpoint graph is a

graph-representation of the input code where each vertex represents either the

entry/exit block of the program or a loop-head, and the edges are labeled with

sequences of assumptions or assignments. The representation of the input code

as a cutpoint graph is adopted to maximize the application of acceleration pro-

cedures. Indeed, acceleration techniques can be applied only to transitions

representing self-loops (and matching some other syntactic patterns, as dis-

cussed in chapter 5 and chapter 7). Consider the pseudocode in Figure 8.2(a).

The näıve CFG representation of the loop, reported in Figure 8.2(b), involves

a first edge linking the while condition and the if-then-else condition. Two

other edges represent the two branches and a fourth edge goes back from a

“join location” after the if-then-else to the loop head. Translating such code

representation into a transition system prevents the application of acceleration

procedures since no transition will represent a self-loop. A cutpoint graph rep-

146 Booster: a verification framework for programs with arrays

while(C1) {

if (C2) {

op-if;

}

else {

op-else;

}

op;

}

assume(C1);
assume(C2);

op-if;

assume(!C2);
op-else;

op;

assume(!C1);

assume(C1);
assume(C2);

op-if;

op;

assume(C1);
assume(!C2);
op-else;

op;

assume(!C1);

(a) (b) (c)

Figure 8.2. Two equivalent representations of the same program. The one on the
right allows for the application of acceleration procedures.

resentation of the same code has, however, only two self-loops over the same

vertex (Figure 8.2(c)). Both loops will be analyzed by the acceleration proce-

dure.

8.1.2 Abstract Interpreter

Abstract interpretation has been considered, so far, as one of the most efficient

approaches for inferring inductive invariants of programs. Abstract interpre-

tation targets the efficient (i.e., at compile time) generation of properties in

some abstract domain of interest. An abstract domain can be thought as a

(fragment of a) theory [Gulwani and Tiwari, 2006]. The main differences be-

tween abstract interpretation and the solutions presented so far in this thesis is

represented by the fact that the inductive invariants produced by an abstract

interpreter are not ensured to be safe. Abstract interpretation solutions target

efficiency with the counter-effect of returning false alarms, usually due to the

application of join or widening operators (the latter one, being required for

ensuring convergence of the technique).

Since the seminal Cousots’ paper [Cousot and Cousot, 1977], many different

abstract domains have been studied. An abstract domain identifies the proper-

ties one can infer. For example, the interval domain [Cousot and Cousot, 1977]

is not powerful enough, in general, to check desired comparison between two

scalar variables in the code, as it targets the generation of invariants of the kind

c1 ≤ x ≤ c2 for a variable x and two numerical constants c1, c2 ∈ [−∞,+∞].

The polyhedral abstraction is more precise, as it allows the inference of linear

relationship between scalar program variables. The price of higher precision

of this domain is the highest computational complexity, which implies an un-

8.1 Architecture of Booster 147

avoidable loss of efficiency. The abstract domain octagons constitutes a fairly

good compromise between the interval domain and the polyhedral domain, as it

targets the generation of relations of the kind ±x+±y ≤ c. On the other side,

its has cubic complexity in time2. Logozzo and Fähndrich present in [Logozzo

and Fähndrich, 2010] another abstract domain useful for inferring relations

over pairs of variables which is less precise but at the same time cheaper from

a computational point of view than the octagon domain. It is the pentagon

abstract domain. It allows to infer properties of the kind c1 ≤ x ≤ c2 ∧ x < y,

for pairs of variables x, y and rationals c1, c2.

In this context, abstract interpretation can be of great help for two main

reasons. First, the abstract interpreter we implemented generates invariants

by exploring the program in a forward fashion while our fixpoint engine works

backwardly. Mixing forward and backward analyses has been shown to be a

winning technique in many cases (see, e.g., [De Angelis et al., 2014a]). Sec-

ond, Booster implements an abstract interpreter working on convex polyhe-

dra [Cousot and Halbwachs, 1978, Bagnara et al., 2003]. This is the abstract

domain P = (P,v,t,u,∇) where P is the infinite set of all possible linear

inequalities over the scalar variables s of the program ST , v is a partial order

over P, t and u are respectively the join and the meet operators of the lattice

(P,v) and ∇ is a widening operator. We assume that our abstract interpreter

computes a standard upward Kleene iteration sequence over P driven by pro-

gram instructions over the scalars. Operations on arrays are treated as follows:

array reads return undefined values, array writes are ignored. Convergence to a

fixpoint is guaranteed by the application of the widening operator∇, as defined

in [Bagnara et al., 2003]. The abstract interpreter takes, therefore, as input

an array-based transition system ST and returns for each control location an

inductive invariant, that is, an element of P closed by post-image computation

with respect to the τ ’s of ST , which therefore includes all reachable states at

that location. After converting, for each program location l, the invariant into

a first-order formula Cl(v), we obtain an inductive invariant for ST , satisfied

by all reachable states:

K(s) :=
∧
l∈L

pc = l→ Cl(s)

where Cl(s) is a linear inequality with integer coefficients over the program

scalar variables s.

Notably, it is rather hard, in general, to infer the facts Cl(s) as interpolants,

2A precise analysis is given by Bagnara et al. in [Bagnara et al., 2005].

148 Booster: a verification framework for programs with arrays

even with the enhancing of interpolation procedures with several heuristics for

tuning the quality of the interpolants. This approach, on the contrary, produces

them almost for free. In our case, term abstraction can leverage such additional

lemmas to discover new unsat cores by abstracting away more terms, resulting

in the generation of more general interpolants.

8.1.3 Acceleration (1)

This module targets the verification of simple0
A-programs, as defined in sec-

tion 7.3. From Definition 7.3.2, these are programs characterized by (i) having

a flat control-flow structure, i.e., each location belongs to at most one loop,

and (ii) comprising only loops that can be accelerated as Flat Array Prop-

erties. If the given CG is a simple0
A-program, Booster accelerates all the

loops. This is a cheap template-based pattern matching task. The loops are

substituted with their accelerated counterparts; subsequently Booster gener-

ates the proof-obligations, which are Flat Array Properties, required to check

the (un)safety of the program. Unfortunately, this fragment is not entirely cov-

ered by decision procedures implemented in available SMT-solvers. In practice,

Booster relies on the Z3 SMT-solver [de Moura and Bjørner, 2008] for solving

such queries. The SMT-solver is usually very efficient on unsatisfiable proof

obligations, but might struggle on satisfiable ones (an example is given later).

The BMC analysis executed before this module, however, is generally able to

find the corresponding traces, reporting the unsafety of the code before start-

ing this acceleration procedure. It is important to notice that, at this stage of

the analysis, Booster exploits the full power of acceleration on a well-defined

class of transitions, i.e., the loops of simple0
A-programs. Conversely, the tech-

nique implemented in the “Acceleration (2)” module inside the fixpoint engine

mcmt (described later), applies to a wider class of transitions but intractable

formulæ generated by the acceleration are over-approximated.

A concrete example of Flat Array Property

As an example of Flat Array Property where Z3 fails3, consider the mergeInter-

leave procedure, taken from [Dillig et al., 2010] and reported in Figure 8.3(a).

The formal representation of this procedure according to the definitions of

chapter 6 and chapter 7 is the following: a = a, b, r, c = i, k. N is a constant

of the background theory. Λ is the set of formulæ (we omit identical updates

3To the best of our knowledge, this formula is out of reach for all the available SMT-
solvers.

8.1 Architecture of Booster 149

procedure mergeInterleave (a[N] , b[N] , r[N] , k) {
for (i = 0; i < N ; i = i+ 2) r[i] = a[i];

for (i = 1; i < N ; i = i+ 2) r[i] = b[i];

if(0 ≤ k ∧ k < N ∧ k ≡2 0) assert(r[k] = b[k]);

if(0 ≤ k ∧ k < N ∧ k ≡2 1) assert(r[k] = a[k]);

}

(a)

linit

l1

l2

l3

lerror

τ1

τ2

τ3

τ4

τ5

τE2
τE1

(b)

Figure 8.3. The mergeInterleave procedure (a) and its control-flow graph (b).

and the transitions not leading to error locations):

τ1 := i′ = 0

τ2 := i < N ∧ r′ = λj.if (j = i) then a(j) else r(j) ∧ i′ = i+ 2

τ3 := i ≥ N ∧ i′ = 1

τ4 := i < N ∧ r′ = λj.if (j = i) then b(j) else r(j) ∧ i′ = i+ 2

τ5 := i ≥ N
τE1 := k ≥ 0 ∧ k < N ∧ k ≡2 0 ∧ r[k] 6= b[k]

τE2 := k ≥ 0 ∧ k < N ∧ k ≡2 1 ∧ r[k] 6= a[k]

The procedure mergeInterleave can be formalized as the control-flow graph de-

picted in Figure 8.3(b) (as before, we are not reporting edges of the control-flow

graph that are not considered for checking the safety of the procedure), where

L = {linit, l1, l2, l3, lerror}.
Transitions τ2 and τ4 are simplek-assignments. Their accelerations are (omit-

ting identical updates):

τ+
2 := ∃y.

 y > 0 ∧ i′ = i+ 2y ∧
∀j.((i ≤ j < i+ 2y ∧D2(j − i))→ j < N) ∧
r′ = λj.if (i ≤ j < 2y + i ∧D2(j − i)) then a(j) else r(j)

and

τ+
4 := ∃y.

 y > 0 ∧ i′ = i+ 2y ∧
∀j.((i ≤ j < i+ 2y ∧D2(j − i))→ j < N) ∧
r′ = λj.if (i ≤ j < 2y + i ∧D2(j − i)) then b(j) else r(j)

150 Booster: a verification framework for programs with arrays

The procedure mergeInterleave is not safe: a possible execution run showing

the unsafety is τ1 ∧ τ+
2 ∧ τ3 ∧ τ+

4 ∧ τ5 ∧ τE1 , because r is initialized in the even

positions with elements from a, not from b. The error trace is the Flat Array

Property:

i1 = 0 ∧ ∀j.r1(j) = r0(j) ∧

∃y1.

 y1 > 0 ∧ i2 = i1 + 2y1 ∧
∀j.((i1 ≤ j < i1 + 2y1 ∧D2(j − i1))→ j < N) ∧
∀j.(r2(j) = if (i1 ≤ j < 2y1 + i1 ∧D2(j − i1)) then a(j) else r1(j))

 ∧
i2 ≥ N ∧ i3 = 1 ∧ ∀j.(r3(j) = r2(j)) ∧

∃y3.

 y3 > 0 ∧ i4 = i3 + 2y3 ∧
∀j.((i3 ≤ j < i3 + 2y3 ∧D2(j − i3))→ j < N) ∧
∀j.(r4(j) = if (i3 ≤ j < 2y3 + i3 ∧D2(j − i3)) then b(j) else r3(j))

 ∧
i4 ≥ N ∧ i5 = i4 ∧ ∀j.(r5(j) = r4(j)) ∧
0 ≤ k ∧ k < N ∧D2(k) ∧ r5(k) 6= b(k) ∧
i6 = i5 ∧ ∀j.(r6(j) = r5(j))

This formula is, to the best of our knowledge, not solvable by any available

SMT-solver.

8.1.4 Bounded Model Checking

As we introduced at the very beginning of this thesis, Bounded Model Checking

(BMC) is a technique introduced two decades ago in the arena of software

model-checking techniques [Biere et al., 1999]. Given a transition system ST =

(v, linit, lerror, T), this techniques generates the formulæ

pc(n) = linit ∧
n∧
i=1

T (v(i),v(i−1)) ∧ pc(0) = lerror (2.6)

for all n up to a given N , and checks their T -satisfiability. The technique is

inherently incomplete, meaning that it can only prove the unsafety of ST and

can do that only if ST admits a counterexample of length m ≤ N . Recall from

Theorem 3.3.1 that the T -(un)satisfiability of (2.6) is decidable in our case.

The role played by BMC inside Booster is to detect the unsafety of pro-

grams before enabling analysis (like acceleration) with a high impact on the

tool performance. Indeed, formulæ generated by the “Acceleration (1)” are

8.1 Architecture of Booster 151

Flat Array Properties, and we have proven in section 6.3.3 that checking their

satisfiability may be a NExpTime-complete problem. A low number of un-

windings constitutes, at this stage of the analysis, a good trade-off between

precision (number of unsafe programs detected) and efficiency.

8.1.5 Transition System generation

If the program is not a simple0
A-program or the SMT-solver exploited by the

“Acceleration (1)” module times out, the CG of the program is translated into

a transition system and then fed into the fixpoint engine.

8.1.6 Fixpoint engine – MCMT

The fixpoint engine included in Booster is an enhanced version of mcmt,

where approaches of chapter 3 with the heuristics of chapter 4 and the solu-

tions of chapter 5 have been combined. mcmt performs three main operations.

It applies a flattening procedure to the input transition system, accelerates all

the transitions it can accelerate and then executes the lawi approach. When

a spurious counterexample arises it checks whether it contains an accelerated

transition or not. In the former case it applies the refinement procedure de-

scribed in section 5.3.2, in the latter the interpolation-based refinement of

section 3.3. The choice of mcmt with respect to safari is to overcome the

intrinsic limitations of OpenSMT, in particular because of its not offering

decision procedures for LIA.

Flattening

Flattening is a preprocessing technique exploited to reduce the transition for-

mulæ and state formulæ to a flat format, i.e., where array variables are indexed

only by existentially quantified variables (recall Definition 2.2.1). It exploits the

rewriting rule φ(a[t], ...) ∃x(x = t ∧ φ(a[x], ...)). Recall from chapter 4 that

this format is particularly indicated for inferring quantified predicates within

the lawi framework and it is exploited by the term abstraction heuristic.

Acceleration (2)

mcmt adopts acceleration as a preprocessing step, following the approach de-

scribed in chapter 5. In contrast with the “Acceleration (1)” module discussed

152 Booster: a verification framework for programs with arrays

previously, acceleration here is applied to a wider class of transitions, but preim-

ages along accelerated formulæ are not kept precise given their intractable for-

mat and are over-approximated with their monotonic abstraction as discussed

in section 5.3 by performing finite instantiations of the universal quantifiers

over a set of terms I automatically retrieved from the formula itself.

Lazy Abstraction With Interpolants

This module implements the approach discussed in chapter 3, inheriting all the

heuristics presented in chapter 4. The term abstraction list is automatically

generated by Booster. Booster generates term abstraction lists containing

symbolic constants and iterators of the program.

8.1.7 Portfolio approach

As shown in chapter 4, the Term Abstraction heuristic has a great impact

on the effectiveness of the LAWI framework for arrays. One of the biggest

limitations of Term Abstraction, however, is its requiring a term abstraction

list to select the terms to abstract away while generating the interpolants.

Booster nullifies the required user ingenuity for defining a proper term ab-

straction list. Internal heuristics, inherited from safari, generate some suitable

term abstraction lists. The fixpoint engine is subsequently executed adopting

a portfolio approach, according to which Booster generates several paral-

lel instances of mcmt, each with different settings (including different term

abstraction lists).

8.2 Experimental evaluation

We evaluated Booster on more than 200 programs (both safe and unsafe)

with arrays taken from the following sources:

• Programs where an array is exploited to implement a set. We verify that

the inserting and deleting procedures maintains the property stating that

the array does not contain duplicates.

• www.sanfoundry.com/c-programming-examples-arrays/. Some of the

program on the web-page are not interesting from our point of view (e.g.,

some of them are there only to show how to print array elements, for

teaching purposes, and do not exhibit any interesting array manipulation

algorithm).

www.sanfoundry.com/c-programming-examples-arrays/

8.2 Experimental evaluation 153

• Well-known sorting procedures.

• Relevant literature on solutions for the analysis of array programs. Some

of these programs have been deliberately modified in order to test the

strength of the tool. For example, the “copyN .c” programs have N con-

secutive loops, each copying one array into a new one4. Notably, for a

CEGAR-based analysis these examples are rather challenging, as coun-

terexamples will go through several loops and each loop may be unwound

different number of times within the same counterexample.

• SV-COMP repository, “loops” folder.

All experiments have been executed on a computer equipped with an In-

tel(R) Xeon(R) CPU @ 2.40GHz and 16GB of RAM. Booster was executed

with the following parameters:

• Z3 timeout: 500 ms

• bmc depth: 1

• parallel executions of mcmt: 40

• number of iterations before applying widening: 3

Running time has been measured always with the time utility, taking the first

result (flagged as “real”).

In this section we want to evaluate the performance of Booster depending

on the different combinations of techniques enabled. As discussed before, the

analysis techniques implemented in Booster are abstract interpretation, ac-

celeration (precise, for programs admitting a decidable reachability analysis),

acceleration (approximated) and abstraction5. In all the graphics that we will

show in this chapter, these techniques will be represented by the acronyms AI,

DP, Acc and Abs. The standard precise backward reachability is represented

by a -. Each graphic will plot the value of bivariate variables having as co-

ordinates the running time of Booster executed with two different settings.

Information about which techniques have been evaluated in each graph is given

by the labels of the axes. For example, the label “AI Acc” states that the

values of each point in the plot for that axis is the running time of Booster

4For example, “copy3.c” copies an input array a into a new array b, b into a new array c,
c into a new array d. The property we check in the end is that a is equal to d.

5BMC is enabled only when the precise acceleration procedure runs.

154 Booster: a verification framework for programs with arrays

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

A
I

-

Safe
Unsafe

(a)

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

D
P

-

Safe
Unsafe

(b)

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

A
c
c

-

Safe
Unsafe

(c)

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

A
b
s

-

Safe
Unsafe

(d)

Figure 8.4. Comparison between the precise backward reachability procedure and
the precise backward reachability procedure enhanced with abstract interpretation
(a), precise acceleration (b), approximated acceleration (c), lazy abstraction with
interpolants (d).

executed on one example of our benchmark suite enabling abstract interpreta-

tion and the approximated version of acceleration, leaving disabled both the

precise acceleration procedure and the abstraction feature. We display the di-

agonal for each plot. This line helps in showing which techniques “win” on

which benchmark: a point below the diagonal indicates that the setting of the

y-axis performs better than the setting on the x-axis, and vice-versa.

8.2.1 Advantages over precise backward reachability

We want to evaluate, at first, the contribution of each technique implemented in

Booster to limiting divergence of the standard precise backward reachability

analysis. Graphics in Figure 8.4 compare the backward reachability analysis

8.2 Experimental evaluation 155

with and without the enhancing of the static analysis techniques implemented

in Booster, that is Abstract Interpretation, Acceleration (both approximated

and precise) and lazy abstraction with interpolants.

As expected, backward reachability is not able to detect the safety of the

input code for any of the safe problems, while detects the unsafety of all the

programs with a bug.

The graphics show also that all the techniques contribute in limiting diver-

gence. Not surprisingly, the two most-effective techniques are the approximated

acceleration and lazy abstraction with interpolants. The precise acceleration

procedure succeeds only on those examples matching a strict templates (see

chapter 6). In addition, the abstract interpretation module succeeds on a few

examples. These are benchmarks where, despite the presence of arrays, the re-

quired invariant is a property over the scalars of the code. For such programs

it is sufficient to generate a quantifier-free safe inductive invariant.

From this evaluation we can also draw another conclusion: none of the

techniques slows down the tool on the entire set of unsafe benchmarks. All

the graphics in Figure 8.4 indicate that the different techniques can achieve

a speed-up on some benchmarks and be slower with respect to the precise

backward reachability on some other benchmarks.

8.2.2 Benefits of each technique

We now want to evaluate the benefits of each technique when compared with

the others. That is, we evaluate the benefits of a single technique against the

benefits given by the other techniques alone and all together. The general

outcome, as we shall discuss in the following sections, is that all the techniques

we implemented in Booster offer some advantages making them mandatory

for some benchmarks where they succeed while all the other techniques fail.

This points out that an integrated framework like Booster has higher chances

of success, compared with those tools based on one, single analysis technique.

We now discuss the benefits of each technique in details.

Abstract Interpretation

The abstract domain implemented inside Booster works with the polyhedra

abstract domain. It cannot infer quantified properties. As the graphics in

Figure 8.5 show, Booster generally fails on safe instances if only the abstract

interpreter is enabled. However, all the plots except the one in Figure 8.5d

admit some circle on the above y-axis, meaning that there are examples for

156 Booster: a verification framework for programs with arrays

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

D
P

AI

Safe
Unsafe

(a)

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

A
c
c

AI

Safe
Unsafe

(b)

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

A
b
s

AI

Safe
Unsafe

(c)

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

D
P

A
c
c
A
b
s

AI

Safe
Unsafe

(d)

Figure 8.5. Strength of abstract interpretation with respect to precise acceleration
(a), approximated acceleration (b), lazy abstraction with interpolants (c) and the
three techniques together (d).

which the abstract interpreter wins against the other techniques, if applied

alone. Such examples, however can be solved if acceleration, both precise

and approximated, and lazy abstraction with interpolants are enabled. Still,

however, there are examples on the up-right corner of Figure 8.5d. This means

that there are examples for which neither the abstract interpreter alone nor the

other three techniques combined can solve. These examples can be actually

solved, as we shall discuss later, by combining the four techniques together.

Precise acceleration

Precise acceleration has a clear and precise target, i.e., the benchmarks which

cutpoint graph is a simple0
A-program. For such programs it is possible to

produce a finite number of formulæ such that their satisfiability implies the

8.2 Experimental evaluation 157

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

A
I

DP

Safe
Unsafe

(a)

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

A
c
c

DP

Safe
Unsafe

(b)

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

A
b
s

DP

Safe
Unsafe

(c)

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

A
I
A
c
c
A
b
s

DP

Safe
Unsafe

(d)

Figure 8.6. Strength of precise acceleration with respect to abstract interpretation
(a), approximated acceleration (b), lazy abstraction with interpolants (c) and the
three techniques together (d).

presence of a bug in the code and their unsatisfiability indicates a valid safe

inductive invariant proving the safety of the program. To overcome possible

slow-downs due to the fact that our decision procedure is not currently imple-

mented in any SMT-solver6, we enable in parallel a BMC module in charge of

detecting unsafe programs. Given the architecture of Booster, if the input

code is not a simple0
A-program, Booster will execute only a precise backward

reachability on the code. The outcome, for such examples is the one discussed

earlier7. The benefits of this module is that it guarantees the termination of

the analysis on a class of benchmarks on which the other techniques (alone

or combined) fail. Indeed, all the graphics of Figure 8.6 admits circles on the

6In this case, the solver might timeout returning unknown instead of sat or unsat.
7BMC is enabled only for simple0A-programs.

158 Booster: a verification framework for programs with arrays

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

A
I

Acc

Safe
Unsafe

(a)

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

D
P

Acc

Safe
Unsafe

(b)

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

A
b
s

Acc

Safe
Unsafe

(c)

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

A
I
D
P

A
b
s

Acc

Safe
Unsafe

(d)

Figure 8.7. Strength of approximated acceleration with respect to abstract inter-
pretation (a), precise acceleration (b), lazy abstraction with interpolants (c) and
the three techniques together (d).

above x-axis. For some safe programs, this technique is also faster than the

others.

Approximated acceleration

Approximated acceleration compromises precision for effectiveness. As dis-

cussed in chapter 5, this technique generates formulæ that might be outside

of decidable fragments of the theories of arrays we assume as the background

theory. For this reason, it applies an approximation step to make the technique

effective in practice.

The graphics in Figure 8.7 report the evaluation of the strength of the

approximated acceleration module in comparison with the other techniques

implemented in Booster. From Figure 8.7a it is clear that this technique is

8.2 Experimental evaluation 159

superior, on safe instances, to the single abstract interpreter, even though the

right y-axis reports a few circles, representing programs for which this analysis

times out, at the contrary of the configurations where the abstract interpreter

is enabled.

Figure 8.7b witnesses the fact that the two accelerations have different

strengths and weaknesses: both of them fail on some programs (safe and unsafe)

and perform better on different set of benchmarks.

Figure 8.7c shows that this module and the abstraction module have or-

thogonal strengths and weaknesses, witnessed by the fact that they timeout

on different safe examples. The unsafe benchmarks follow the same pattern

of the safe ones, albeit they are not reporting divergence but only different

performance.

In the end, Figure 8.7d shows that acceleration alone brings an impor-

tant advantage inside Booster: a relevant portion of the benchmarks are

represented by circles or crosses above the diagonal. For this examples, the

approximated acceleration module enables an analysis which is more effective

than the other three combined.

Lazy Abstraction with Interpolants

Lazy Abstraction with Interpolants is the last module we discuss in this section.

It is the last analysis that can be enabled in Booster, running at the end of

the architectural pipeline of the model-checker.

This analysis technique targets generality: as opposed to acceleration pro-

cedures, where strict syntactic patterns determine whether the technique can

be applied or not, acceleration operates on every array-based transition system.

Its chances of success depend on different heuristics, though, as discussed in

chapter 4. Here we notice that the graphics of Figure 8.8 confirm our previous

findings. Abstraction is useful given its generality, but have to be coupled with

other techniques that, different in spirit, are able to limit its divergence.

8.2.3 Acceleration vs. Abstraction

Another important evaluation is the one measuring the benefits of abstraction

(in its two different shapes) and acceleration (where precise and approximated

versions are combined). The graphic is shown in Figure 8.9. From this graphic

it is clear that abstraction and acceleration should be combined in order to

achieve important results. Indeed, both techniques fail on different portions

of our benchmark suite. Their combination, as it has been implemented in

160 Booster: a verification framework for programs with arrays

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

A
I

Abs

Safe
Unsafe

(a)

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

D
P

Abs

Safe
Unsafe

(b)

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

A
c
c

Abs

Safe
Unsafe

(c)

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

A
I
D
P

A
c
c

Abs

Safe
Unsafe

(d)

Figure 8.8. Strength of lazy abstraction with interpolants with respect to abstract
interpretation (a), precise acceleration (b), approximated acceleration (c) and the
three techniques together (d).

Booster, leads to a success on both sets where only one fails. In addition,

the combination of the two techniques succeeds also on examples where both

techniques fail. This is the case, for example, of programs with nested loops.

Acceleration alone fails because it can deal only with the inner loop. Abstrac-

tion, on the other side, is not able to generate a safe inductive invariant because

the counterexamples traverse the two loops. This means that the chain of in-

terpolants for one counterexample has to contain facts that will contribute to

two different loop invariants. On the other side, the combination of the two

analysis will be beneficial since acceleration will avoid divergence along the

inner loop, and abstraction will have to deal with only the external one.

8.3 Summary 161

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

D
P

A
c
c

AI Abs

Safe
Unsafe

Figure 8.9. Comparison between abstraction and acceleration.

8.2.4 The combined framework

As a final experimental comparison, we report in Figure 8.10 the graphics

showing the performance of Booster with all the techniques enabled and

Booster with all but one the techniques enabled. It is clear from the graph-

ics that enabling all the techniques allow to achieve the best results. It is

not excluded that there might be little slowdowns: Figure 8.10d, for exam-

ple, compares Booster with all the techniques enabled and Booster with

only abstraction disabled. Some safe programs are reported below the diago-

nal. This means that for those benchmarks, abstraction is not necessary and

introduces an overhead slowing down the tool. However, in none of the four

graphics of Figure 8.10 there are circles on the right y-axes. This shows that

the combination of the four techniques is able to solve benchmarks that are

out of reach for Booster with some techniques disabled.

8.3 Summary

In this chapter we presented a framework, called Booster, for the verifica-

tion of programs with arrays. It is written in C++, and it is available at

http://verify.inf.usi.ch/booster. The framework builds upon the re-

sults presented in the entire thesis, and combines them efficiently in order to

overcome their individual limitations. The declarative playground is the key

for being able to integrate all such techniques and enrich them with other

state-of-the-art static analysis solutions (in the case of Booster, abstract in-

http://verify.inf.usi.ch/booster

162 Booster: a verification framework for programs with arrays

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

D
P

A
c
c
A
b
s

AI DP Acc Abs

Safe
Unsafe

(a)

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

A
I
A
c
c
A
b
s

AI DP Acc Abs

Safe
Unsafe

(b)

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

A
I
D
P

A
b
s

AI DP Acc Abs

Safe
Unsafe

(c)

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

A
I
D
P

A
c
c

AI DP Acc Abs

Safe
Unsafe

(d)

Figure 8.10. Strength of Booster with all its features enabled with respect to
Booster when one of its feature is disabled: abstract interpretation (a), pre-
cise acceleration (b), approximated acceleration (c) and the lazy abstraction with
interpolants (d).

terpretation and bounded model-checking).

An extensive experimental analysis concludes the chapter. The experiments

empirically show the effectiveness of Booster on a wide set of state-of-the-art

benchmarks. In addition, we discussed the benefit of every singular analysis

implemented in Booster providing a detailed discussion about the benefits

of acceleration over abstraction and vice-versa.

8.3.1 Related publications

The results reported in this chapter have been published in the following papers:

• F. Alberti, S. Ghilardi, and N. Sharygina. A framework for the verifica-

tion of parameterized infinite-state systems. In L. Giordano, V. Gliozzi,

8.3 Summary 163

and G.L. Pozzato, editors, Proceedings of the 29th Italian Conference on

Computational Logic, Torino, Italy, June 16-18, 2014, volume 1195 of

CEUR Workshop Proceedings, pages 303–308. CEUR-WS.org, 2014.

• F. Alberti, S. Ghilardi, and N. Sharygina. Booster: An acceleration-

based verification framework for array programs. In F. Cassez and J.-F.

Raskin, editors, Automated Technology for Verification and Analysis -

12th International Symposium, ATVA 2014, Sydney, NSW, Australia,

November 3-7, 2014, Proceedings, volume 8837 of Lecture Notes in Com-

puter Science, pages 18–23. Springer, 2014.

• F. Alberti, and D. Monniaux Polyhedra to the rescue of array inter-

polants. In SAC 2015. To appear.

164 Booster: a verification framework for programs with arrays

Chapter 9

Conclusions

Efficient and effective solutions for the analysis of programs with arrays require

the ability to generate and handle quantified formulæ representing meaningful

properties about their executions. The need for quantifiers invalidates the vast

majority of existing frameworks for the static analysis of software systems and

presents new challenges.

In this thesis we addressed the problem of verifying programs with arrays

from different points of view, taking into considerations both “high-level” the-

oretical problems, like studying the definability of the acceleration of a class of

relations used to declaratively encode pieces of programs, to “low-level” prag-

matic issues, like implementing instantiation procedures for developing sound

static analysis tools.

The first contribution of the thesis is given in chapter 3. We presented a

new verification framework for the analysis of programs with arrays following

the “Lazy Abstraction with Interpolant” approach [McMillan, 2006], where re-

finement is performed by computing interpolants from unsatisfiable formulæ

encoding spurious counterexamples. The generation of quantified safe induc-

tive invariants is achieved by pipelining a preprocessing procedure, introducing

quantified variables in the transition relation, and a refinement one generating

quantifier-free interpolants to refine the explored state-space. In section 3.3 we

identified a fragment of the theory of arrays admitting quantifier-free interpo-

lation. Section 3.4 targets the study of suitable hypothesis for the termination

of the backward (CEGAR-based) reachability analysis we presented.

Chapter 4 discusses an efficient implementation of the results of chapter 3.

The issues we target in chapter 4 arise from the needs of handling quantified

formulæ and tuning the refinement procedure. The former problem has been

tackled by devising practical (and necessary incomplete) instantiation proce-

165

166 Conclusions

dures and strategies for exploring the reachable state-space in a convenient

way delaying the introduction of new quantified variables. The latter problem,

instead, has been mitigated with the help of two heuristics, “term abstrac-

tion” and “counterexample minimization”. Term abstraction tunes interpola-

tion procedures in order to compute more general interpolants increasing the

chances to generate a safe inductive invariant. Counterexample minimization

limits the changes to the explored state-space preferring local and peripheral

refinements to global and more invasive ones. Experimentally these two tech-

niques pay off and allow to achieve good experimental results.

As a future direction in this field, it is unavoidable that the framework we

presented in chapters 3 will be “contaminated” by the IC3 philosophy. Started

with the work of Aaron Bradley, [Bradley, 2011], IC3 (or PDR, Property Di-

rected Reachability) received a lot of attention in the last two years. After

the initial improvements proposed on the propositional level [Eén et al., 2011],

IC3 has been lifted to the first-order level by many authors, e.g., [Cimatti and

Griggio, 2012, Hoder and Bjørner, 2012]. The most recent advantages in this

research thread are, to the best of our knowledge, those presented by Cimatti

et al. in [Cimatti et al., 2014] and Birgmeier et al. in [Birgmeier et al., 2014].

There are no IC3-based tools that are able to work with parameterized systems.

It would be interesting, therefore to pursue this direction. All the papers pre-

senting re-implementation of old algorithms and ideas in a new IC3-like style

show an improvement of the performances. On the other side, IC3 offers only

a new way for exploring the state-space and reacting to the detection of too

coarse abstraction, the so called “counterexample to induction”, but does not

target the generation of more general interpolants or other problems lying at

the core of abstraction-based solution. The techniques presented in chapter 4

will be therefore likely needed as well in new IC3-based solutions for the veri-

fication of parameterized systems.

In our application domain, two issues have to be solved in order to develop

a verification framework. One need to keep under control both the introduc-

tion of quantifiers and the quality of the interpolants. The standard theory of

arrays does not allow quantifier-free interpolation [Kapur et al., 2006] and such

theoretical limitation might prevent the effectiveness of static analyzer relying

on interpolation theorem provers like iZ3 [McMillan, 2011], given the unpre-

dictable shape of interpolants. In this setting, a general strategy for achieving

quantifier-free interpolation is by enlarging the signature of a theory. This has

been done for the linear arithmetic case, over Z: The divisibility predicates

are required to establish quantifier-free interpolation. The works [Totla and

Wies, 2013,Bruttomesso et al., 2012b] apply this idea to the theory of arrays.

167

Enlarging the signature has a drawback, though. If the new signature becomes

unmanageable from a computational point of view, the gain obtained with

quantifier-free interpolation is lost. The second issue limiting the efficiency of

interpolation-based refinement is the randomness of interpolants. The term

abstraction heuristic, discussed in section 4.1.1, allows to compute better in-

terpolants. Term abstraction has been generalized in [Rümmer and Subotic,

2013]. Other works addressing the same goal of Term Abstraction are mostly

on the propositional level [Rollini et al., 2013]. It would be interesting to

understand the effect of such techniques on a first-order logic level.

Another contribution of the thesis is the definition of an acceleration frame-

work for the analysis of programs with arrays. In chapter 5 we addressed the

problem of divergence of backward reachability from a different perspective

with respect to the one taken in chapter 3. Inspired by the works on in-

teger variables [Bozga et al., 2009a, Bozga et al., 2009b, Bozga et al., 2010],

we studied whether acceleration would have been applicable in the context of

the analysis of programs with arrays. Section 5.2 deals with the theoretical

problem to find a class of relations admitting first-order definable acceleration

(modulo a first-order theory of practical interest) and having both a relevance

from a practical point of view, meaning that it allows the encoding of loops of

programs with arrays. We also show how to exploit acceleration in practice:

the solution we propose in section 5.3 get rid of nested quantifiers, required

to encode the acceleration of relations representing program loops, by includ-

ing abstraction. Finally we experimentally showed that acceleration can be

considered a complement of abstraction-based solutions.

Our acceleration procedure is template-based. The identification of new

acceleration templates would allow a broader application of acceleration in

program analysis. It would be also interesting to study a framework leveraging

the results of [Bozga et al., 2009a,Bozga et al., 2009b,Bozga et al., 2010] in a

modular way for finding array accelerations.

The investigation that lead us to the findings given in chapter 6 has been

triggered by the interest in understanding whether acceleration would have

been enough to decide the safety of programs with arrays. The paper [Bozga

et al., 2014] targets the same problem in the context of programs with integers.

In presence of arrays, the situation is more problematic. Constraining the shape

of the control-flow graph of the program to a flat structure (i.e., every location

belongs to at most one loop) and requiring that each loop of the program

belongs to the fragment admitting a definable acceleration is not enough to

infer decidability results, since the proof obligations (dis)proving the safety of

the program might be outside decidable fragments of our background theory of

168 Conclusions

arrays ([Bradley et al., 2006,Habermehl et al., 2008b,Ge and de Moura, 2009]).

Section 6.2 identifies a new decidable fragment of the mono-sorted theory of

arrays while section 6.3 deals with the multi-sorted case. These fragments allow

us to identify a class of programs with arrays admitting decidable reachability

analysis. This is the contribution of chapter 7.

It is not excluded that the class of programs with arrays for which the safety

is decidable is actually bigger than the one we found. In order to enlarge this

class one may want to investigate both new acceleration schemata and new

decidable quantified fragments of the theory of arrays.

A last contribution of the thesis is the tool Booster. Leveraging the

declarative nature of all our contributions, we studied how to integrate all of

them in a single framework. In Booster, abstract interpretation, accelera-

tion and lazy abstraction with interpolation live together and collaborate to

the generation of safe inductive invariants. Booster does not only integrate

static analysis techniques proposed in this thesis, but complement this set with

state-of-the-art solutions like BMC and abstract interpretation. The abstract

interpreter implemented in Booster, in particular, works with the polyhedra

abstract domain. It generates, therefore, quantifier-free invariants over LIA.

This has been done intentionally: experiments show that such quantifier-free

inductive (but not safe!) invariant can be generalized by the refinement pro-

cedure and may lead to the generation of better interpolants, achieving the

ultimate goal of increasing the success of Booster on a larger class of exam-

ples. In the future it would be interesting to evaluate the benefits of abstract

domain targeting the inference of quantified inductive invariants, e.g., [Cousot

et al., 2011, Gulwani et al., 2008]. This is not straightforward: a quantified

inductive invariant would add universal quantifiers in the guard of the transi-

tions. This means that the lawi framework should include some techniques

to deal with these extra quantifiers, as it has been done in section 5.3 to deal

with accelerated transitions.

Despite the tool Booster, implementing and integrating all the contri-

bution of this thesis, showed good practical results, many challenges, some of

which have been highlighted in this chapter, are still open. Their solutions will

likely improve the state-of-the-art of verification of program with arrays and

may positively influence the wider area of parameterized systems verification.

Bibliography

[Abdulla, 2010] Abdulla, P. (2010). Forcing monotonicity in parameterized

verification: From multisets to words. In van Leeuwen, J., Muscholl, A.,

Peleg, D., Pokorný, J., and Rumpe, B., editors, SOFSEM 2010: Theory

and Practice of Computer Science, 36th Conference on Current Trends in

Theory and Practice of Computer Science, Spindleruv Mlýn, Czech Republic,

January 23-29, 2010. Proceedings, volume 5901 of Lecture Notes in Computer

Science, pages 1–15. Springer.

[Abdulla et al., 2009] Abdulla, P., Atto, M., Cederberg, J., and Ji, R. (2009).

Automated analysis of data-dependent programs with dynamic memory. In

Liu, Z. and Ravn, A., editors, Automated Technology for Verification and

Analysis, 7th International Symposium, ATVA 2009, Macao, China, October

14-16, 2009. Proceedings, volume 5799 of Lecture Notes in Computer Science,

pages 197–212. Springer.

[Abdulla et al., 2008a] Abdulla, P., Bouajjani, A., Cederberg, J., Haziza, F.,

and Rezine, A. (2008a). Monotonic abstraction for programs with dynamic

memory heaps. In Gupta, A. and Malik, S., editors, Computer Aided Verifi-

cation, 20th International Conference, CAV 2008, Princeton, NJ, USA, July

7-14, 2008, Proceedings, volume 5123 of Lecture Notes in Computer Science,

pages 341–354. Springer.

[Abdulla et al., 1996] Abdulla, P., Cerans, K., Jonsson, B., and Tsay, Y.-K.

(1996). General decidability theorems for infinite-state systems. In Proceed-

ings, 11th Annual IEEE Symposium on Logic in Computer Science, New

Brunswick, New Jersey, USA, July 27-30, 1996, pages 313–321. IEEE Com-

puter Society.

[Abdulla et al., 2007a] Abdulla, P., Delzanno, G., Henda, N. B., and Rezine,

A. (2007a). Regular model checking without transducers (on efficient ver-

169

170 BIBLIOGRAPHY

ification of parameterized systems). In [Grumberg and Huth, 2007], pages

721–736.

[Abdulla et al., 2007b] Abdulla, P., Delzanno, G., and Rezine, A. (2007b). Pa-

rameterized verification of infinite-state processes with global conditions.

In [Damm and Hermanns, 2007], pages 145–157.

[Abdulla et al., 2008b] Abdulla, P., Henda, N. B., Delzanno, G., and Rezine,

A. (2008b). Handling parameterized systems with non-atomic global condi-

tions. In [Logozzo et al., 2008], pages 22–36.

[Abdulla and Jonsson, 1996] Abdulla, P. and Jonsson, B. (1996). Verifying

programs with unreliable channels. Inf. Comput., 127(2):91–101.

[Ábrahám and Havelund, 2014] Ábrahám, E. and Havelund, K., editors

(2014). Tools and Algorithms for the Construction and Analysis of Systems -

20th International Conference, TACAS 2014, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2014, Greno-

ble, France, April 5-13, 2014. Proceedings, volume 8413 of Lecture Notes in

Computer Science. Springer.

[ACMs Press Release on the 2007 A.M. Turing Award recipients., 2007]

ACMs Press Release on the 2007 A.M. Turing Award recipients.

(2007). http://www.acm.org/press-room/news-releases-2008/

turing-award-07/.

[Aho et al., 2007] Aho, A., Lam, M., Sethi, R., and Ullman, J. (2007). Com-

pilers: Principles, Techniques, and Tools. Addison-Wesley Educational Pub-

lishers, Incorporated.

[Albarghouthi et al., 2012a] Albarghouthi, A., Gurfinkel, A., and Chechik, M.

(2012a). Craig interpretation. In [Miné and Schmidt, 2012], pages 300–316.

[Albarghouthi et al., 2012b] Albarghouthi, A., Li, Y., Gurfinkel, A., and

Chechik, M. (2012b). UFO: A framework for abstraction- and interpolation-

based software verification. In [Madhusudan and Seshia, 2012], pages 672–

678.

[Alberti, 2010] Alberti, F. (2010). Verifica parametrica di protocolli fault-

tolerant. Master’s thesis, Università degli Studi di Milano.

http://www.acm.org/press-room/news-releases-2008/turing-award-07/
http://www.acm.org/press-room/news-releases-2008/turing-award-07/

BIBLIOGRAPHY 171

[Alberti et al., 2011a] Alberti, F., Armando, A., and Ranise, S. (2011a).

ASASP: automated symbolic analysis of security policies. In Bjørner, N.

and Sofronie-Stokkermans, V., editors, Automated Deduction - CADE-23 -

23rd International Conference on Automated Deduction, Wroclaw, Poland,

July 31 - August 5, 2011. Proceedings, volume 6803 of Lecture Notes in

Computer Science, pages 26–33. Springer.

[Alberti et al., 2011b] Alberti, F., Armando, A., and Ranise, S. (2011b). Ef-

ficient symbolic automated analysis of administrative attribute-based rbac-

policies. In Cheung, B., Hui, L. C. K., Sandhu, R., and Wong, D., ed-

itors, Proceedings of the 6th ACM Symposium on Information, Computer

and Communications Security, ASIACCS 2011, Hong Kong, China, March

22-24, 2011, pages 165–175. ACM.

[Alberti et al., 2012a] Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S.,

and Sharygina, N. (2012a). Lazy abstraction with interpolants for arrays. In

Bjørner, N. and Voronkov, A., editors, LPAR, volume 7180 of Lecture Notes

in Computer Science, pages 46–61. Springer.

[Alberti et al., 2012b] Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S.,

and Sharygina, N. (2012b). Reachability Modulo Theory library. In 10th

International Workshop on Satisfiability Modulo Theories (SMT).

[Alberti et al., 2012c] Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S.,

and Sharygina, N. (2012c). SAFARI: SMT-Based Abstraction for Arrays

with Interpolants. In [Madhusudan and Seshia, 2012], pages 679–685.

[Alberti et al., 2014a] Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S.,

and Sharygina, N. (2014a). An extension of lazy abstraction with interpola-

tion for programs with arrays. Formal Methods in System Design, 45(1):63–

109.

[Alberti et al., 2010a] Alberti, F., Ghilardi, S., Pagani, E., Ranise, S., and

Rossi, G. (2010a). Automated support for the design and validation of fault

tolerant parameterized systems: a case study. ECEASST, 35.

[Alberti et al., 2010b] Alberti, F., Ghilardi, S., Pagani, E., Ranise, S., and

Rossi, G. (2010b). Brief announcement: Automated support for the design

and validation of fault tolerant parameterized systems - a case study. In

Lynch, N. and Shvartsman, A. A., editors, DISC, volume 6343 of Lecture

Notes in Computer Science, pages 392–394. Springer.

172 BIBLIOGRAPHY

[Alberti et al., 2012d] Alberti, F., Ghilardi, S., Pagani, E., Ranise, S., and

Rossi, G. (2012d). Universal guards, relativization of quantifiers, and failure

models in Model Checking Modulo Theories. JSAT, 8(1/2):29–61.

[Alberti et al., 2013a] Alberti, F., Ghilardi, S., and Sharygina, N. (2013a).

Acceleration-based safety decision procedure for programs with arrays. In

McMillan, K. L., Middeldorp, A., Sutcliffe, G., and Voronkov, A., editors,

LPAR 2013, 19th International Conference on Logic for Programming, Arti-

ficial Intelligence and Reasoning, December 12-17, 2013, Stellenbosch, South

Africa, Short papers proceedings, volume 26 of EPiC Series, pages 1–8. Easy-

Chair.

[Alberti et al., 2013b] Alberti, F., Ghilardi, S., and Sharygina, N. (2013b).

Definability of accelerated relations in a theory of arrays and its applications.

In Fontaine, P., Ringeissen, C., and Schmidt, R. A., editors, Frontiers of

Combining Systems - 9th International Symposium, FroCoS 2013, Nancy,

France, September 18-20, 2013. Proceedings, volume 8152 of Lecture Notes

in Computer Science, pages 23–39. Springer.

[Alberti et al., 2014b] Alberti, F., Ghilardi, S., and Sharygina, N. (2014b).

Booster: An acceleration-based verification framework for array programs.

In Cassez, F. and Raskin, J., editors, Automated Technology for Verification

and Analysis - 12th International Symposium, ATVA 2014, Sydney, NSW,

Australia, November 3-7, 2014, Proceedings, volume 8837 of Lecture Notes

in Computer Science, pages 18–23. Springer.

[Alberti et al., 2014c] Alberti, F., Ghilardi, S., and Sharygina, N. (2014c). De-

cision procedures for Flat Array Properties. In [Ábrahám and Havelund,

2014], pages 15–30.

[Alberti et al., 2014d] Alberti, F., Ghilardi, S., and Sharygina, N. (2014d). A

framework for the verification of parameterized infinite-state systems. In

Giordano, L., Gliozzi, V., and Pozzato, G. L., editors, Proceedings of the

29th Italian Conference on Computational Logic, Torino, Italy, June 16-18,

2014., volume 1195 of CEUR Workshop Proceedings, pages 303–308. CEUR-

WS.org.

[Alberti et al., 2015] Alberti, F., Ghilardi, S., and Sharygina, N. (2015). Deci-

sion procedures for Flat Array Properties. Journal of Automated Reasoning,

54(4):327–352.

BIBLIOGRAPHY 173

[Alberti and Monniaux, 2015] Alberti, F. and Monniaux, D. (2015). Polyhedra

to the rescue of array interpolants. In SAC 2015. To appear.

[Alberti and Sharygina, 2012] Alberti, F. and Sharygina, N. (2012). Invariant

generation by infinite-state model checking. In 2nd International Workshop

on Intermediate Verification Languages.

[Armando et al., 2007a] Armando, A., Benerecetti, M., Carotenuto, D., Man-

tovani, J., and Spica, P. (2007a). The Eureka tool for software model check-

ing. In Stirewalt, R., Egyed, A., and Fischer, B., editors, ASE, pages 541–

542. ACM.

[Armando et al., 2007b] Armando, A., Benerecetti, M., and Mantovani, J.

(2007b). Abstraction refinement of linear programs with arrays. In [Grum-

berg and Huth, 2007], pages 373–388.

[Bach and Shallit, 1996] Bach, E. and Shallit, J. (1996). Algorithmic number

theory. Vol. 1. Foundations of Computing Series. MIT Press.

[Bagnara et al., 2005] Bagnara, R., Hill, P., Mazzi, E., and Zaffanella, E.

(2005). Widening operators for weakly-relational numeric abstractions. In

[Hankin and Siveroni, 2005], pages 3–18.

[Bagnara et al., 2003] Bagnara, R., Hill, P., Ricci, E., and Zaffanella, E.

(2003). Precise widening operators for convex polyhedra. In Cousot, R., ed-

itor, Static Analysis, 10th International Symposium, SAS 2003, San Diego,

CA, USA, June 11-13, 2003, Proceedings, volume 2694 of Lecture Notes in

Computer Science, pages 337–354. Springer.

[Ball and Rajamani, 2002] Ball, T. and Rajamani, S. (2002). The SLAM

project: debugging system software via static analysis. In [Launchbury and

Mitchell, 2002], pages 1–3.

[Behrmann et al., 2002] Behrmann, G., Bengtsson, J., David, A., Larsen, K.,

Pettersson, P., and Yi, W. (2002). UPPAAL implementation secrets. In

Damm, W. and Olderog, E.-R., editors, FTRTFT, volume 2469 of Lecture

Notes in Computer Science, pages 3–22. Springer.

[Beyer, 2013] Beyer, D. (2013). Second Competition on Software Verification

- (summary of SV-COMP 2013). In Piterman, N. and Smolka, S., editors,

TACAS, volume 7795 of Lecture Notes in Computer Science, pages 594–609.

Springer.

174 BIBLIOGRAPHY

[Beyer, 2014] Beyer, D. (2014). Status report on software verification - (compe-

tition summary SV-COMP 2014). In [Ábrahám and Havelund, 2014], pages

373–388.

[Beyer et al., 2007a] Beyer, D., Henzinger, T. A., Jhala, R., and Majumdar,

R. (2007a). The software model checker Blast. STTT, 9(5-6):505–525.

[Beyer et al., 2007b] Beyer, D., Henzinger, T. A., Majumdar, R., and Ry-

balchenko, A. (2007b). Invariant synthesis for combined theories. In Cook,

B. and Podelski, A., editors, VMCAI, volume 4349 of Lecture Notes in Com-

puter Science, pages 378–394. Springer.

[Beyer and Keremoglu, 2011] Beyer, D. and Keremoglu, E. (2011).

CPAchecker: A tool for configurable software verification. In Gopalakr-

ishnan, G. and Qadeer, S., editors, CAV, volume 6806 of Lecture Notes in

Computer Science, pages 184–190. Springer.

[Biere and Bloem, 2014] Biere, A. and Bloem, R., editors (2014). Computer

Aided Verification - 26th International Conference, CAV 2014, Held as Part

of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-

22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer Science.

Springer.

[Biere et al., 1999] Biere, A., Cimatti, A., Clarke, E., and Zhu, Y. (1999).

Symbolic model checking without BDDs. In Cleaveland, R., editor, TACAS,

volume 1579 of Lecture Notes in Computer Science, pages 193–207. Springer.

[Birgmeier et al., 2014] Birgmeier, J., Bradley, A., and Weissenbacher, G.

(2014). Counterexample to induction-guided abstraction-refinement (CTI-

GAR). In [Biere and Bloem, 2014], pages 831–848.

[Bjesse and Slobodová, 2011] Bjesse, P. and Slobodová, A., editors (2011). In-

ternational Conference on Formal Methods in Computer-Aided Design, FM-

CAD ’11, Austin, TX, USA, October 30 - November 02, 2011. FMCAD

Inc.

[Bjørner, 2010] Bjørner, N. (2010). Linear quantifier elimination as an abstract

decision procedure. In [Giesl and Hähnle, 2010], pages 316–330.

[Bjørner et al., 2013] Bjørner, N., McMillan, K., and Rybalchenko, A. (2013).

On solving universally quantified horn clauses. In [Logozzo and Fähndrich,

2013], pages 105–125.

BIBLIOGRAPHY 175

[Blanchet et al., 2002] Blanchet, B., Cousot, P., Cousot, R., Feret, J.,

Mauborgne, L., Miné, A., Monniaux, D., and Rival, X. (2002). Design

and implementation of a special-purpose static program analyzer for safety-

critical real-time embedded software. In Mogensen, T., Schmidt, D., and

Sudborough, I. H., editors, The Essence of Computation, volume 2566 of

Lecture Notes in Computer Science, pages 85–108. Springer.

[Börger et al., 1997] Börger, E., Grädel, E., and Gurevich, Y. (1997). The

Classical Decision Problem. Perspectives in Mathematical Logic. Springer.

[Bouajjani and Maler, 2009] Bouajjani, A. and Maler, O., editors (2009).

Computer Aided Verification, 21st International Conference, CAV 2009,

Grenoble, France, June 26 - July 2, 2009. Proceedings, volume 5643 of Lec-

ture Notes in Computer Science. Springer.

[Bouton et al., 2009] Bouton, T., de Oliveira, D. C. B., Déharbe, D., and

Fontaine, P. (2009). veriT: An open, trustable and efficient smt-solver. In

Schmidt, R., editor, Automated Deduction - CADE-22, 22nd International

Conference on Automated Deduction, Montreal, Canada, August 2-7, 2009.

Proceedings, volume 5663 of Lecture Notes in Computer Science, pages 151–

156. Springer.

[Bozga et al., 2009a] Bozga, M., Gı̂rlea, C., and Iosif, R. (2009a). Iterating

octagons. In Kowalewski, S. and Philippou, A., editors, TACAS, volume

5505 of Lecture Notes in Computer Science, pages 337–351. Springer.

[Bozga et al., 2009b] Bozga, M., Habermehl, P., Iosif, R., Konecný, F., and

Vojnar, T. (2009b). Automatic verification of integer array programs. In

[Bouajjani and Maler, 2009], pages 157–172.

[Bozga et al., 2010] Bozga, M., Iosif, R., and Konecný, F. (2010). Fast acceler-

ation of ultimately periodic relations. In Touili, T., Cook, B., and Jackson,

P., editors, CAV, volume 6174 of Lecture Notes in Computer Science, pages

227–242. Springer.

[Bozga et al., 2014] Bozga, M., Iosif, R., and Konecný, F. (2014). Safety prob-

lems are np-complete for flat integer programs with octagonal loops. In

McMillan, K. and Rival, X., editors, Verification, Model Checking, and Ab-

stract Interpretation - 15th International Conference, VMCAI 2014, San

Diego, CA, USA, January 19-21, 2014, Proceedings, volume 8318 of Lecture

Notes in Computer Science, pages 242–261. Springer.

176 BIBLIOGRAPHY

[Bozga et al., 2009c] Bozga, M., Iosif, R., and Lakhnech, Y. (2009c). Flat

parametric counter automata. Fundam. Inform., 91(2):275–303.

[Bradley, 2011] Bradley, A. (2011). SAT-based model checking without un-

rolling. In Jhala, R. and Schmidt, D., editors, VMCAI, volume 6538 of

Lecture Notes in Computer Science, pages 70–87. Springer.

[Bradley et al., 2006] Bradley, A., Manna, Z., and Sipma, H. (2006). What’s

decidable about arrays? In Emerson, E. and Namjoshi, K., editors, VMCAI,

volume 3855 of Lecture Notes in Computer Science, pages 427–442. Springer.

[Brillout et al., 2010] Brillout, A., Kroening, D., Rümmer, P., and Wahl, T.

(2010). An interpolating sequent calculus for quantifier-free Presburger arith-

metic. In [Giesl and Hähnle, 2010], pages 384–399.

[Bruttomesso et al., 2006] Bruttomesso, R., Cimatti, A., Franzén, A., Griggio,

A., Santuari, A., and Sebastiani, R. (2006). To ackermann-ize or not to

ackermann-ize? on efficiently handling uninterpreted function symbols in

SMT (EUF èT). In Hermann, M. and Voronkov, A., editors, Logic for Pro-

gramming, Artificial Intelligence, and Reasoning, 13th International Con-

ference, LPAR 2006, Phnom Penh, Cambodia, November 13-17, 2006, Pro-

ceedings, volume 4246 of Lecture Notes in Computer Science, pages 557–571.

Springer.

[Bruttomesso et al., 2012a] Bruttomesso, R., Ghilardi, S., and Ranise, S.

(2012a). From strong amalgamability to modularity of quantifier-free in-

terpolation. In IJCAR, Lecture Notes in Computer Science, pages 118–133.

Springer.

[Bruttomesso et al., 2012b] Bruttomesso, R., Ghilardi, S., and Ranise, S.

(2012b). Quantifier-free interpolation of a theory of arrays. Logical Methods

in Computer Science, 8(2).

[Bruttomesso et al., 2010] Bruttomesso, R., Pek, E., Sharygina, N., and Tsi-

tovich, A. (2010). The OpenSMT solver. In Esparza, J. and Majumdar, R.,

editors, TACAS, volume 6015 of Lecture Notes in Computer Science, pages

150–153. Springer.

[Carioni et al., 2011] Carioni, A., Ghilardi, S., and Ranise, S. (2011). Auto-

mated termination in Model Checking Modulo Theories. In Delzanno, G.

and Potapov, I., editors, RP, volume 6945 of Lecture Notes in Computer

Science, pages 110–124. Springer.

BIBLIOGRAPHY 177

[Chandra and Toueg, 1990] Chandra, T. and Toueg, S. (1990). Time and mes-

sage efficient reliable broadcasts. In van Leeuwen, J. and Santoro, N., edi-

tors, Distributed Algorithms, 4th International Workshop, WDAG ’90, Bari,

Italy, September 24-26, 1990, Proceedings, volume 486 of Lecture Notes in

Computer Science, pages 289–303. Springer.

[Chase et al., 1990] Chase, D., Wegman, M., and Zadeck, F. (1990). Analysis

of pointers and structures. In Fischer, B., editor, PLDI, pages 296–310.

ACM.

[Cimatti and Griggio, 2012] Cimatti, A. and Griggio, A. (2012). Software

model checking via IC3. In [Madhusudan and Seshia, 2012], pages 277–293.

[Cimatti et al., 2014] Cimatti, A., Griggio, A., Mover, S., and Tonetta, S.

(2014). IC3 modulo theories via implicit predicate abstraction. In [Ábrahám

and Havelund, 2014], pages 46–61.

[Cimatti et al., 2010] Cimatti, A., Griggio, A., and Sebastiani, R. (2010). Ef-

ficient generation of Craig interpolants in Satisfiability Modulo Theories.

ACM Trans. Comput. Log., 12(1):7.

[Clarisó and Cortadella, 2007] Clarisó, R. and Cortadella, J. (2007). The oc-

tahedron abstract domain. Sci. Comput. Program., 64(1):115–139.

[Clarke et al., 2000] Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H.

(2000). Counterexample-guided abstraction refinement. In Emerson, E. and

Sistla, A., editors, CAV, volume 1855 of Lecture Notes in Computer Science,

pages 154–169. Springer.

[Clarke et al., 2004] Clarke, E., Kroening, D., and Lerda, F. (2004). A tool

for checking ANSI-C programs. In Jensen, K. and Podelski, A., editors,

TACAS, volume 2988 of Lecture Notes in Computer Science, pages 168–176.

Springer.

[Clarke et al., 2001] Clarke, E. M., Grumberg, O., and Peled, D. (2001). Model

checking. MIT Press.

[Comon and Jurski, 1998] Comon, H. and Jurski, Y. (1998). Multiple counters

automata, safety analysis and Presburger arithmetic. In Hu, A. and Vardi,

M., editors, CAV, volume 1427 of Lecture Notes in Computer Science, pages

268–279. Springer.

178 BIBLIOGRAPHY

[Cook, 1978] Cook, S. A. (1978). Soundness and completeness of an axiom

system for program verification. SIAM Journal on Computing, 7(1):70–90.

[Cooper, 1972] Cooper, D. (1972). Theorem proving in arithmetic without

multiplication. In Meltzer, B. and Michie, D., editors, Machine Intelligence,

volume 7, pages 91–100. Edinburgh University Press.

[Cousot and Cousot, 1977] Cousot, P. and Cousot, R. (1977). Abstract inter-

pretation: A unified lattice model for static analysis of programs by con-

struction or approximation of fixpoints. In Graham, R., Harrison, M., and

Sethi, R., editors, POPL, pages 238–252. ACM.

[Cousot et al., 2005] Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné,

A., Monniaux, D., and Rival, X. (2005). The astreé analyzer. In Sagiv, S.,

editor, Programming Languages and Systems, 14th European Symposium on

Programming,ESOP 2005, Held as Part of the Joint European Conferences

on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April

4-8, 2005, Proceedings, volume 3444 of Lecture Notes in Computer Science,

pages 21–30. Springer.

[Cousot et al., 2011] Cousot, P., Cousot, R., and Logozzo, F. (2011). A para-

metric segmentation functor for fully automatic and scalable array content

analysis. In Ball, T. and Sagiv, M., editors, POPL, pages 105–118. ACM.

[Cousot and Halbwachs, 1978] Cousot, P. and Halbwachs, N. (1978). Auto-

matic discovery of linear restraints among variables of a program. In Aho,

A., Zilles, S., and Szymanski, T., editors, POPL, pages 84–96. ACM Press.

[Craig, 1957] Craig, W. (1957). Three uses of the Herbrand-Gentzen theorem

in relating model theory and proof theory. J. Symb. Log., 22(3):269–285.

[Damm and Hermanns, 2007] Damm, W. and Hermanns, H., editors (2007).

Computer Aided Verification, 19th International Conference, CAV 2007,

Berlin, Germany, July 3-7, 2007, Proceedings, volume 4590 of Lecture Notes

in Computer Science. Springer.

[De Angelis et al., 2014a] De Angelis, E., Fioravanti, F., Pettorossi, A., and

Proietti, M. (2014a). Program verification via iterated specialization. Sci.

Comput. Program., 95:149–175.

[De Angelis et al., 2014b] De Angelis, E., Fioravanti, F., Pettorossi, A., and

Proietti, M. (2014b). Verimap: A tool for verifying programs through trans-

formations. In [Ábrahám and Havelund, 2014], pages 568–574.

BIBLIOGRAPHY 179

[de Moura and Bjørner, 2007] de Moura, L. and Bjørner, N. (2007). Efficient

e-matching for SMT solvers. In Pfenning, F., editor, CADE, volume 4603 of

Lecture Notes in Computer Science, pages 183–198. Springer.

[de Moura and Bjørner, 2008] de Moura, L. and Bjørner, N. (2008). Z3: An

efficient SMT solver. In [Ramakrishnan and Rehof, 2008], pages 337–340.

[de Moura and Bjørner, 2009] de Moura, L. and Bjørner, N. (2009). General-

ized, efficient array decision procedures. In FMCAD, pages 45–52. IEEE.

[de Moura and Bjørner, 2011] de Moura, L. and Bjørner, N. (2011). Satisfi-

ability Modulo Theories: introduction and applications. Commun. ACM,

54(9):69–77.

[Delzanno et al., 1999] Delzanno, G., Esparza, J., and Podelski, A. (1999).

Constraint-based analysis of broadcast protocols. In Flum, J. and Rodŕıguez-

Artalejo, M., editors, CSL, volume 1683 of Lecture Notes in Computer Sci-

ence, pages 50–66. Springer.

[Detlefs et al., 2003] Detlefs, D., Nelson, G., and Saxe, J. (2003). Simplify: a

theorem prover for program checking. Technical Report HPL-2003-148, HP

Labs.

[Dillig et al., 2010] Dillig, I., Dillig, T., and Aiken, A. (2010). Fluid updates:

Beyond strong vs. weak updates. In Gordon, A., editor, ESOP, volume 6012

of Lecture Notes in Computer Science, pages 246–266. Springer.

[Dimitrova and Podelski, 2008] Dimitrova, R. and Podelski, A. (2008). Is lazy

abstraction a decision procedure for broadcast protocols? In [Logozzo et al.,

2008], pages 98–111.

[Dragan and Kovács, 2014] Dragan, I. and Kovács, L. (2014). LINGVA: Gen-

erating and proving program properties using symbol elimination. In PSI.

To appear.

[Dudka et al., 2011] Dudka, K., Peringer, P., and Vojnar, T. (2011). Predator:

A practical tool for checking manipulation of dynamic data structures using

separation logic. In CAV, pages 372–378.

[Dudka et al., 2013] Dudka, K., Peringer, P., and Vojnar, T. (2013). Byte-

precise verification of low-level list manipulation. In [Logozzo and Fähndrich,

2013], pages 215–237.

180 BIBLIOGRAPHY

[Eén et al., 2011] Eén, N., Mishchenko, A., and Brayton, R. (2011). Efficient

implementation of property directed reachability. In [Bjesse and Slobodová,

2011], pages 125–134.

[Esparza et al., 1999] Esparza, J., Finkel, A., and Mayr, R. (1999). On the

verification of broadcast protocols. In LICS, pages 352–359. IEEE Computer

Society.

[Finkel and Leroux, 2002] Finkel, A. and Leroux, J. (2002). How to compose

Presburger-accelerations: Applications to broadcast protocols. In Agrawal,

M. and Seth, A., editors, FSTTCS, volume 2556 of Lecture Notes in Com-

puter Science, pages 145–156. Springer.

[Flanagan and Qadeer, 2002] Flanagan, C. and Qadeer, S. (2002). Predicate

abstraction for software verification. In [Launchbury and Mitchell, 2002],

pages 191–202.

[Floyd, 1962] Floyd, R. (1962). Algorithm 97: Shortest path. Commun. ACM,

5(6):345.

[Furia and Meyer, 2010] Furia, C. and Meyer, B. (2010). Inferring loop invari-

ants using postconditions. In Blass, A., Dershowitz, N., and Reisig, W.,

editors, Fields of Logic and Computation, volume 6300 of Lecture Notes in

Computer Science, pages 277–300. Springer.

[Garg et al., 2014] Garg, P., Löding, C., Madhusudan, P., and Neider, D.

(2014). ICE: A robust framework for learning invariants. In [Biere and

Bloem, 2014], pages 69–87.

[Ge et al., 2009] Ge, Y., Barrett, C. W., and Tinelli, C. (2009). Solving quan-

tified verification conditions using satisfiability modulo theories. Annals of

Mathematics and Artificial Intelligence, 55(1-2):101–122.

[Ge and de Moura, 2009] Ge, Y. and de Moura, L. (2009). Complete instanti-

ation for quantified formulas in satisfiabiliby modulo theories. In [Bouajjani

and Maler, 2009], pages 306–320.

[Ghilardi and Ranise, 2009] Ghilardi, S. and Ranise, S. (2009). Model Check-

ing Modulo Theory at work: the integration of Yices in MCMT. In AFM.

[Ghilardi and Ranise, 2010a] Ghilardi, S. and Ranise, S. (2010a). Backward

reachability of array-based systems by SMT solving: Termination and in-

variant synthesis. Logical Methods in Computer Science, 6(4).

BIBLIOGRAPHY 181

[Ghilardi and Ranise, 2010b] Ghilardi, S. and Ranise, S. (2010b). Mcmt: A

model checker modulo theories. In [Giesl and Hähnle, 2010], pages 22–29.

[Ghilardi et al., 2009] Ghilardi, S., Ranise, S., and Valsecchi, T. (2009). Light-

weight SMT-based model checking. Electr. Notes Theor. Comput. Sci.,

250(2):85–102.

[Giesl and Hähnle, 2010] Giesl, J. and Hähnle, R., editors (2010). Automated

Reasoning, 5th International Joint Conference, IJCAR 2010, Edinburgh,

UK, July 16-19, 2010. Proceedings, volume 6173 of Lecture Notes in Com-

puter Science. Springer.

[Goel et al., 2008] Goel, A., Krstic, S., and Fuchs, A. (2008). Deciding Array

formulas with fruagal axiom instantiation. In SMT Workshop 2008.

[Gopan et al., 2005] Gopan, D., Reps, T. W., and Sagiv, S. (2005). A frame-

work for numeric analysis of array operations. In Palsberg, J. and Abadi,

M., editors, POPL, pages 338–350. ACM.

[Graf and Säıdi, 1997] Graf, S. and Säıdi, H. (1997). Construction of abstract

state graphs with PVS. In Grumberg, O., editor, CAV, volume 1254 of

Lecture Notes in Computer Science, pages 72–83. Springer.

[Grumberg and Huth, 2007] Grumberg, O. and Huth, M., editors (2007). Tools

and Algorithms for the Construction and Analysis of Systems, 13th Interna-

tional Conference, TACAS 2007, Held as Part of the Joint European Con-

ferences on Theory and Practice of Software, ETAPS 2007 Braga, Portugal,

March 24 - April 1, 2007, Proceedings, volume 4424 of Lecture Notes in

Computer Science. Springer.

[Gulwani et al., 2008] Gulwani, S., McCloskey, B., and Tiwari, A. (2008). Lift-

ing abstract interpreters to quantified logical domains. In Necula, G. and

Wadler, P., editors, POPL, pages 235–246. ACM.

[Gulwani and Tiwari, 2006] Gulwani, S. and Tiwari, A. (2006). Combining

abstract interpreters. In Schwartzbach, M. and Ball, T., editors, PLDI,

pages 376–386. ACM.

[Gurfinkel et al., 2011] Gurfinkel, A., Chaki, S., and Sapra, S. (2011). Efficient

predicate abstraction of program summaries. In Bobaru, M. G., Havelund,

K., Holzmann, G., and Joshi, R., editors, NASA Formal Methods - Third

International Symposium, NFM 2011, Pasadena, CA, USA, April 18-20,

182 BIBLIOGRAPHY

2011. Proceedings, volume 6617 of Lecture Notes in Computer Science, pages

131–145. Springer.

[Habermehl et al., 2008a] Habermehl, P., Iosif, R., and Vojnar, T. (2008a). A

logic of singly indexed arrays. In Cervesato, I., Veith, H., and Voronkov,

A., editors, Logic for Programming, Artificial Intelligence, and Reasoning,

15th International Conference, LPAR 2008, Doha, Qatar, November 22-27,

2008. Proceedings, volume 5330 of Lecture Notes in Computer Science, pages

558–573. Springer.

[Habermehl et al., 2008b] Habermehl, P., Iosif, R., and Vojnar, T. (2008b).

What else is decidable about integer arrays? In Amadio, R., editor, Founda-

tions of Software Science and Computational Structures, 11th International

Conference, FOSSACS 2008, Held as Part of the Joint European Confer-

ences on Theory and Practice of Software, ETAPS 2008, Budapest, Hun-

gary, March 29 - April 6, 2008. Proceedings, volume 4962 of Lecture Notes

in Computer Science, pages 474–489. Springer.

[Halbwachs and Péron, 2008] Halbwachs, N. and Péron, M. (2008). Discover-

ing properties about arrays in simple programs. In Gupta, R. and Amaras-

inghe, S., editors, PLDI, pages 339–348. ACM.

[Hankin and Siveroni, 2005] Hankin, C. and Siveroni, I., editors (2005). Static

Analysis, 12th International Symposium, SAS 2005, London, UK, September

7-9, 2005, Proceedings, volume 3672 of Lecture Notes in Computer Science.

Springer.

[Hendriks and Larsen, 2002] Hendriks, M. and Larsen, K. (2002). Exact ac-

celeration of real-time model checking. Electr. Notes Theor. Comput. Sci.,

65(6):120–139.

[Henry et al., 2012] Henry, J., Monniaux, D., and Moy, M. (2012). Succinct

representations for abstract interpretation - combined analysis algorithms

and experimental evaluation. In [Miné and Schmidt, 2012], pages 283–299.

[Henzinger et al., 2004] Henzinger, T., Jhala, R., Majumdar, R., and McMil-

lan, K. (2004). Abstractions from proofs. In Jones, N. and Leroy, X., editors,

POPL, pages 232–244. ACM.

[Henzinger et al., 2002] Henzinger, T., Jhala, R., Majumdar, R., and Sutre, G.

(2002). Lazy abstraction. In [Launchbury and Mitchell, 2002], pages 58–70.

BIBLIOGRAPHY 183

[Hind, 2001] Hind, M. (2001). Pointer analysis: haven’t we solved this problem

yet? In Field, J. and Snelting, G., editors, PASTE, pages 54–61. ACM.

[Hoder and Bjørner, 2012] Hoder, K. and Bjørner, N. (2012). Generalized

Property Directed Reachability. In Cimatti, A. and Sebastiani, R., editors,

SAT, volume 7317 of Lecture Notes in Computer Science, pages 157–171.

Springer.

[Hoder et al., 2010] Hoder, K., Kovács, L., and Voronkov, A. (2010). Inter-

polation and symbol elimination in Vampire. In [Giesl and Hähnle, 2010],

pages 188–195.

[Hoder et al., 2011] Hoder, K., Kovács, L., and Voronkov, A. (2011). Invariant

generation in Vampire. In Abdulla, P. and Leino, K., editors, TACAS,

volume 6605 of Lecture Notes in Computer Science, pages 60–64. Springer.

[Hodges, 1993] Hodges, W. (1993). Model Theory, volume 42 of Encyclopedia of

Mathematics and its Applications. Cambridge University Press, Cambridge.

[Hojjat et al., 2012] Hojjat, H., Iosif, R., Konecný, F., Kuncak, V., and

Rümmer, P. (2012). Accelerating interpolants. In Chakraborty, S. and

Mukund, M., editors, ATVA, volume 7561 of Lecture Notes in Computer

Science, pages 187–202. Springer.

[Ihlemann et al., 2008] Ihlemann, C., Jacobs, S., and Sofronie-Stokkermans,

V. (2008). On local reasoning in verification. In [Ramakrishnan and Rehof,

2008], pages 265–281.

[Jhala and McMillan, 2006] Jhala, R. and McMillan, K. (2006). A practical

and complete approach to predicate refinement. In Hermanns, H. and Pals-

berg, J., editors, TACAS, volume 3920 of Lecture Notes in Computer Science,

pages 459–473. Springer.

[Jhala and McMillan, 2007] Jhala, R. and McMillan, K. (2007). Array abstrac-

tions from proofs. In [Damm and Hermanns, 2007], pages 193–206.

[Kapur et al., 2006] Kapur, D., Majumdar, R., and Zarba, C. (2006). Interpo-

lation for data structures. In Young, M. and Devanbu, P., editors, SIGSOFT

FSE, pages 105–116. ACM.

[Kovács and Voronkov, 2009] Kovács, L. and Voronkov, A. (2009). Finding

loop invariants for programs over arrays using a theorem prover. In Chechik,

184 BIBLIOGRAPHY

M. and Wirsing, M., editors, FASE, volume 5503 of Lecture Notes in Com-

puter Science, pages 470–485. Springer.

[Lahiri and Bryant, 2004a] Lahiri, S. and Bryant, R. (2004a). Constructing

quantified invariants via predicate abstraction. In Steffen, B. and Levi, G.,

editors, VMCAI, volume 2937 of Lecture Notes in Computer Science, pages

267–281. Springer.

[Lahiri and Bryant, 2004b] Lahiri, S. and Bryant, R. (2004b). Indexed pred-

icate discovery for unbounded system verification. In Alur, R. and Peled,

D., editors, CAV, volume 3114 of Lecture Notes in Computer Science, pages

135–147. Springer.

[Larraz et al., 2013] Larraz, D., Rodŕıguez-Carbonell, E., and Rubio, A.

(2013). SMT-based array invariant generation. In Giacobazzi, R., Berdine,

J., and Mastroeni, I., editors, VMCAI, volume 7737 of Lecture Notes in

Computer Science, pages 169–188. Springer.

[Launchbury and Mitchell, 2002] Launchbury, J. and Mitchell, J., editors

(2002). Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, Portland, OR, USA,

January 16-18, 2002. ACM.

[Lecomte, 2008] Lecomte, T. (2008). Safe and reliable metro platform screen

doors control/command systems. In Cuéllar, J., Maibaum, T., and Sere,

K., editors, FM 2008: Formal Methods, 15th International Symposium on

Formal Methods, Turku, Finland, May 26-30, 2008, Proceedings, volume

5014 of Lecture Notes in Computer Science, pages 430–434. Springer.

[Lewis, 1978] Lewis, H. (1978). Complexity of solvable cases of the decision

problem for the predicate calculus. In 19th Annual Symposium on Founda-

tions of Computer Science, Ann Arbor, Michigan, USA, 16-18 October 1978,

pages 35–47. IEEE Computer Society.

[Logozzo and Fähndrich, 2010] Logozzo, F. and Fähndrich, M. (2010). Pen-

tagons: A weakly relational abstract domain for the efficient validation of

array accesses. Science of Computer Programming, 75(9):796–807.

[Logozzo and Fähndrich, 2013] Logozzo, F. and Fähndrich, M., editors (2013).

Static Analysis - 20th International Symposium, SAS 2013, Seattle, WA,

USA, June 20-22, 2013. Proceedings, volume 7935 of Lecture Notes in Com-

puter Science. Springer.

BIBLIOGRAPHY 185

[Logozzo et al., 2008] Logozzo, F., Peled, D., and Zuck, L., editors (2008).

Verification, Model Checking, and Abstract Interpretation, 9th International

Conference, VMCAI 2008, San Francisco, USA, January 7-9, 2008, Pro-

ceedings, volume 4905 of Lecture Notes in Computer Science. Springer.

[Lynch, 1996] Lynch, N. (1996). Distributed Algorithms. Morgan Kaufmann.

[Madhusudan and Seshia, 2012] Madhusudan, P. and Seshia, S., editors

(2012). Computer Aided Verification - 24th International Conference, CAV

2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings, volume 7358 of Lec-

ture Notes in Computer Science. Springer.

[Manna and Pnueli, 1995] Manna, Z. and Pnueli, A. (1995). Temporal Verifi-

cation of Reactive Systems: Safety. Springer-Verlag.

[McCarthy, 1962] McCarthy, J. (1962). Towards a mathematical science

of computation. In International Federation for Information Processing

Congress, pages 21–28.

[McMillan, 2006] McMillan, K. (2006). Lazy abstraction with interpolants.

In Ball, T. and Jones, R., editors, CAV, volume 4144 of Lecture Notes in

Computer Science, pages 123–136. Springer.

[McMillan, 2008] McMillan, K. (2008). Quantified invariant generation using

an interpolating saturation prover. In [Ramakrishnan and Rehof, 2008],

pages 413–427.

[McMillan, 2011] McMillan, K. (2011). Interpolants from Z3 proofs. In [Bjesse

and Slobodová, 2011], pages 19–27.

[Mendelson, 1997] Mendelson, E. (1997). Introduction to Mathematical Logic.

Taylor & Francis.

[Miné, 2006] Miné, A. (2006). The octagon abstract domain. Higher-Order

and Symbolic Computation, 19(1):31–100.

[Miné and Schmidt, 2012] Miné, A. and Schmidt, D., editors (2012). Static

Analysis - 19th International Symposium, SAS 2012, Deauville, France,

September 11-13, 2012. Proceedings, volume 7460 of Lecture Notes in Com-

puter Science. Springer.

[Minsky, 1967] Minsky, M. (1967). Computation: finite and infinite machines.

Prentice-Hall series in automatic computation. Prentice-Hall.

186 BIBLIOGRAPHY

[Nelson and Oppen, 1979] Nelson, G. and Oppen, D. (1979). Simplification

by Cooperating Decision Procedures. ACM Transactions on Programming

Languages and Systems, 1(2):245–57.

[Newcombe, 2014] Newcombe, C. (2014). Why amazon chose TLA +. In

Ameur, Y. and Schewe, K., editors, Abstract State Machines, Alloy, B, TLA,

VDM, and Z - 4th International Conference, ABZ 2014, Toulouse, France,

June 2-6, 2014. Proceedings, volume 8477 of Lecture Notes in Computer

Science, pages 25–39. Springer.

[Nieuwenhuis and Oliveras, 2005] Nieuwenhuis, R. and Oliveras, A. (2005).

DPLL(T) with exhaustive theory propagation and its application to dif-

ference logic. In Etessami, K. and Rajamani, S., editors, CAV, volume 3576

of Lecture Notes in Computer Science, pages 321–334. Springer.

[Oppen, 1978] Oppen, D. (1978). A 222
pn

upper bound on the complexity of

Presburger arithmetic. J. Comput. Syst. Sci., 16(3):323–332.

[Papadimitriou, 1981] Papadimitriou, C. (1981). On the complexity of integer

programming. J. ACM, 28(4):765–768.

[Podelski and Wies, 2005] Podelski, A. and Wies, T. (2005). Boolean heaps.

In [Hankin and Siveroni, 2005], pages 268–283.

[Ramakrishnan and Rehof, 2008] Ramakrishnan, C. and Rehof, J., editors

(2008). Tools and Algorithms for the Construction and Analysis of Sys-

tems, 14th International Conference, TACAS 2008, Held as Part of the Joint

European Conferences on Theory and Practice of Software, ETAPS 2008,

Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963 of

Lecture Notes in Computer Science. Springer.

[Ranise and Tinelli, 2006] Ranise, S. and Tinelli, C. (2006). The Satisfiability

Modulo Theories Library (SMT-LIB). http://www.smt-lib.org.

[Reynolds et al., 2013] Reynolds, A., Tinelli, C., Goel, A., Krstic, S., Deters,

M., and Barrett, C. (2013). Quantifier instantiation techniques for finite

model finding in SMT. In Bonacina, M., editor, Automated Deduction -

CADE-24 - 24th International Conference on Automated Deduction, Lake

Placid, NY, USA, June 9-14, 2013. Proceedings, volume 7898 of Lecture

Notes in Computer Science, pages 377–391. Springer.

http://www.smt-lib.org

BIBLIOGRAPHY 187

[Reynolds, 2002] Reynolds, J. (2002). Separation logic: A logic for shared

mutable data structures. In LICS, pages 55–74. IEEE Computer Society.

[Rollini et al., 2013] Rollini, S., Alt, L., Fedyukovich, G., Hyvärinen, A., and

Sharygina, N. (2013). Periplo: A framework for producing effective inter-

polants in sat-based software verification. In McMillan, K., Middeldorp,

A., and Voronkov, A., editors, Logic for Programming, Artificial Intelli-

gence, and Reasoning - 19th International Conference, LPAR-19, Stellen-

bosch, South Africa, December 14-19, 2013. Proceedings, volume 8312 of

Lecture Notes in Computer Science, pages 683–693. Springer.

[Rosser, 1939] Rosser, J. (1939). The n-th prime is greater than n log n. Pro-

ceedings of the London Mathematical Society, s2-45(1):21–44.

[RTCA, 2011] RTCA (2011). DO-333, Formal Methods Supplement to DO-

178C and DO-278A.

[Rümmer and Subotic, 2013] Rümmer, P. and Subotic, P. (2013). Exploring

interpolants. In Jobstmann, B. and Ray, S., editors, Formal Methods in

Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-

23, 2013, pages 69–76. IEEE.

[Sagiv et al., 1999] Sagiv, S., Reps, T., and Wilhelm, R. (1999). Parametric

shape analysis via 3-valued logic. In Appel, A. and Aiken, A., editors, POPL,

pages 105–118. ACM.

[Sebastiani, 2007] Sebastiani, R. (2007). Lazy satisability modulo theories.

JSAT, 3(3-4):141–224.

[Seghir et al., 2009] Seghir, M., Podelski, A., and Wies, T. (2009). Abstraction

refinement for quantified array assertions. In Palsberg, J. and Su, Z., edi-

tors, SAS, volume 5673 of Lecture Notes in Computer Science, pages 3–18.

Springer.

[Semënov, 1984] Semënov, A. (1984). Logical theories of one-place functions

on the set of natural numbers. Izvestiya: Mathematics, 22:587–618.

[Srivastava and Gulwani, 2009] Srivastava, S. and Gulwani, S. (2009). Pro-

gram verification using templates over predicate abstraction. In Hind, M.

and Diwan, A., editors, PLDI, pages 223–234. ACM.

188 BIBLIOGRAPHY

[Totla and Wies, 2013] Totla, N. and Wies, T. (2013). Complete instantiation-

based interpolation. In Giacobazzi, R. and Cousot, R., editors, The 40th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, pages 537–548.

ACM.

[Turing, 1936] Turing, A. (1936). On computable numbers, with an applica-

tion to the eintscheidungsproblem. Proceedings of the London Mathematical

Society, 42(1936-7):230–265.

[Wirth, 1978] Wirth, N. (1978). Algorithms + Data Structures = Programs.

Prentice-Hall Series in Automatic Computation. Pearson Education.

	Contents
	List of List of Figures
	List of List of Tables
	Introduction
	Automated formal verification
	Challenges in automated formal verification for software handling arrays

	Contributions of the thesis
	Lazy Abstraction with Interpolants for Arrays
	Acceleration techniques for relations over arrays
	Decision procedures for Flat Array Properties
	Deciding the safety of a class of programs with arrays
	Booster: an acceleration-based verification framework for programs with arrays

	Background
	Formal preliminaries and notational conventions
	Quantifier-free interpolation and quantifier elimination

	Satisfiability Modulo Theories
	Examples of theories
	General undecidability results for arrays of integers
	Definable function and predicate symbols

	Array-based transition systems and their safety
	Array-based transition systems

	Safety and invariants

	Lazy Abstraction with Interpolants for Arrays
	Background
	Unwindings for the safety of array-based transition systems
	Labeled unwindings for the safety of array-based systems
	On checking the safety and completeness of labeled unwindings

	Lazy abstraction with interpolation-based refinement for arrays
	The two sub-procedures of Unwind
	Checking the feasibility of counterexamples
	Refining counterexamples with interpolants
	An interpolation procedure for quantifier-free formulæ

	Correctness and termination
	Precisely recognizing complete labeled unwindings
	Termination of Unwind

	Related work
	Predicate abstraction
	Abstract interpretation
	Theorem Proving
	Shape analysis and Separation Logic
	Template-based approaches

	Summary
	Related publications

	SMT-based Abstraction For Arrays with Refinement by Interpolation
	Implementation and heuristics
	Term Abstraction
	Minimizing counterexamples
	Instantiating universal quantifiers
	Exploration strategy
	Filtering instances
	Primitive differentiated form

	Experiments
	Benchmarks
	Importance of the heuristics

	Discussion
	Related work
	Summary
	Related publications

	Acceleration techniques for relations over arrays
	SMT-based backward reachability
	Backward reachability
	Classification of sentences and transitions

	Definability of Accelerated Relations
	Iterators, selectors and local ground assignments
	Accelerating local ground assignments
	Sub-fragments of acceleratable assignments

	Acceleration-based backward reachability and monotonic abstraction
	Monotonic Abstraction
	An acceleration-based backward reachability procedure

	Experimental evaluation
	Related work
	Summary
	Related publications

	Decision procedures for Flat Array Properties
	Background notation
	The mono-sorted case
	The decision procedure SATMONO
	Correctness and completeness

	The multi-sorted case
	The decision procedure SATMULTI
	Correctness and Completeness
	Complexity Analysis.

	Related work
	Summary
	Related publications

	Deciding the safety of a class of programs with arrays
	Background
	A decidability result for the reachability analysis of flat array programs
	A class of array programs with decidable reachability problem
	Summary
	Related publications

	Booster: a verification framework for programs with arrays
	Architecture of Booster
	Preprocessing
	Abstract Interpreter
	Acceleration (1)
	Bounded Model Checking
	Transition System generation
	Fixpoint engine – MCMT
	Portfolio approach

	Experimental evaluation
	Advantages over precise backward reachability
	Benefits of each technique
	Acceleration vs. Abstraction
	The combined framework

	Summary
	Related publications

	Conclusions

